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CHAPTER 1

INTRODUCTION

The shadow of data loss looms over PC users. An online survey of nearly 600 users by 

Harris Interactive found that 85% of respondents fear losing data [59], Backup prevents 

data loss by storing copies at multiple locations. It must keep data safe from both indepen

dent hardware failures such as disk drive failures and larger-scale, correlated failures due 

to catastrophes like power surges, floods, and natural disasters.

Unfortunately, current approaches to backup are inadequate for many users because 

of their prohibitive cost and inconvenience. Large-scale solutions require aggregation of 

substantial demand to justify the costs of managing a large, centralized repository. Small- 

scale solutions require significant administrative effort by the end user.

1.1 Motivation

Users could pay someone to manage their backup, as most organizations do. Unfortu

nately, paying for backup is expensive. The University of Wisconsin campus computing 

service charges $4,700 to backup 32GB of data at one onsite and one off-site location for 

one year [111] '. Connected TLM, an online backup service, offers to backup at most 4 

GB—but covers neither applications nor the operating system—for $15 per month [27]. 

Most users are unwilling to spend hundreds, much less thousands, of dollars per year on 

backup.

'This assumes no data compression, three revisions per file, six months of file retention, as well as zero 
monthly data growth and deletion.

1
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Users are equally unwilling to backup their data themselves because of the time, pa

tience, and technical expertise required. Harris Interactive found that only one in four PC 

users performs backup “frequently”, 36% do so “sometimes,” 22% do so “seldomly,” and 

9% do “not know how” [59]. Iomega found that 69% of users backup their home PC less 

than once a month or never [30].

Unsurprisingly, users routinely experience data loss. A study by Boston Computing 

found that 6% of all PCs will experience data loss in any given year, that 31% of PC users 

have lost all of their files at some point, and that 57% of PC users have lost an electronic 

file they thought they had backed up [29].

Even the 25% of users who frequently backup their data spend hours or even days 

restoring their PC to a pre-failure state. Users commonly only backup collocated personal 

data, such as the contents of a home directory in UNIX or the My D ocu m en ts  folder in 

Windows. Application and operating system state must be recreated from installation CDs 

and online sources.

This is a significant oversight. An anecdotal account estimated that reinstalling the 

Windows XP operating system can take at least five hours and nearly 150 steps [40]. One 

can reasonably expect to spend a similar amount of time reinstalling a system’s many ap

plications. Locating the many online and offline sources from which applications and the 

operating system were installed, plus the patches and additional packages used throughout 

the lifetime of the disk, can waste hours of productivity.

Luckily, users can take advantage of two trends to gain a low-cost, convenient backup 

service. First, hard-disk capacity remains far ahead of users’ storage needs, creating a 

pool of excess storage capacity. A multi-year study of nearly 10,000 disks by Microsoft 

Research, including 1998 and 2000 to 2004, found that company workstation hard-disks 

were 40% to 50% empty on average each year [15]. Another study of home-machines in 

2002 found that disks were 70% empty on average [15].

Furthermore, access to broadband Internet connectivity is on the rise. Jupiter Research 

estimates that half of all online American households will use a DSL or cable modem 

connection in 2005 and that this percentage will rise to 78% by 2010 [9]. As with storage, 

PC users’ network capacity is largely unused. As we will show in Section 4.5.2, even
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demanding file sharing users utilize only 10% of a cable modem’s upstream capacity and 

under 0.1% of its downstream capacity.

This spare capacity creates the opportunity to build an alternative backup service for 

users unwilling to either pay for a conventional service or manage backup themselves. 

The excess storage and bandwidth can be used to form a peer-to-peer storage collective 

for backup over the Internet. This approach has two primary advantages.

First, the cost to maintain the collective is less than the cost of maintaining the data 

centers used by conventional services. Administration [78], cooling [63], and power[23], 

dominate data center costs.

Peer-to-peer storage’s greatest savings stem from its lack of administrative costs. The 

collective is self-organizing and uses PC owners to keep their machines running. IBM 

reports that hardware and software administration accounts for approximately two-thirds 

of the total cost of owning a commercial storage system, while actual hardware accounts 

for less than 10% [78].

It is difficult to compare the power and cooling costs of each approach with much 

precision. At the very least, the sum of each individual’s cost to power and cool their PC 

should be no more than a data center’s and may be less. Users are not expected to run their 

machines all the time, while data center machines often draw power continuously. This 

may be changing, however, as more intelligent data center power-management schemes 

have been introduced in recent years [23,63]. Also, the aggregate cost to cool a distributed 

storage network may be less than the cost to cool a data center since peer machines are 

not collocated and data centers contain hundreds or thousands of machines within single 

space.

The second major advantage of a peer-to-peer approach is that storing data in the col

lective is convenient. There is no extra hardware such as a second hard disk or an archive 

of removable media to manage. Members are only required to choose and remember a 

password. After users have chosen their password, the system software can manage their 

backup state and recover from failure automatically.

In exchange for lower cost and greater convenience, this approach to backup must 

contend with storing on unreliable, untrusted, and self-interested hosts. Without adminis
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tration, machines will likely be less reliable than in a data center. For example, hosts are 

free to come and go as they please, which could jeopardize reliability. To ensure that data 

is available with very high probability at all times, users can create replicas at multiple 

hosts. Also, because hosts are untrusted, the service must protect users’ privacy. Encryp

tion helps, but it must be applied carefully and efficiently.

Dealing with self-interested hosts is the greatest challenge of all. The cost of sharing 

excess storage and bandwidth is low, but non-zero. For example, users may be holding 

on to this unused storage for insurance against future needs. Thus, it is in every host’s 

interest to contribute as little as possible. If many hosts consume more resources than 

they contribute, the collective may collapse. To encourage contribution, we can treat the 

collective as a barter economy in which hosts trade local storage for remote storage. The 

rules regulating this market must be carefully construed to eliminate abuse without over

constraining resource allocation.

1.2 Thesis Statement

In response to the cost and inconvenience of current approaches to backup, we set out 

to demonstrate the following thesis statement:

It is feasible to provide a convenient, low-cost backup service using 

unreliable, untrusted, and self-interested storage hosts.

1.3 Overview

To validate this thesis, we present the design and implementation of the Pastiche 

backup service. This dissertation is organized as follows:

Chapter 2 presents the underlying technologies that enable Pastiche. Chapter 3 de

scribes the basic Pastiche architecture and how untrusted, unreliable hosts shape its de

sign. Users must be able to recover, even though hosts will come and go without warning. 

Because of this, Pastiche replicates backup state at multiple sites so that recovery is always 

possible with very high probability. Excessive replication can strain system resources. If
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disks are 50% or 70% empty, the collective will support replication factors of only one or 

two.

We must also take care to conserve disk space and network bandwidth. Thus, Pastiche 

members reduce their burden by biasing in favor of sites that already have much of their 

backup state. This redundant data is composed of operating system, application, and media 

files. By identifying hosts with significant overlap, users only need to ship the small 

fraction of data that is unique to them.

To evaluate how well Pastiche can identify common inter-host data, we compared the 

content of seventeen graduate student and faculty workstations in the EECS department at 

the University of Michigan. We found that machines with common installations can expect 

to find 30% to 70% overlap with multiple hosts. Furthermore, our approach to identify

ing inter-host data can also find redundancy within a single file system. The degree of 

local redundancy varied between 20% and 50% of the total, which was similar to previous 

results [79]. If we assume a network with 60% empty disks (between the observed empti

ness of home and office disks), 30% local redundancy, and 50% overlap between hosts, 

Pastiche can support a replication factor of over five.

In addition to addressing users’ need for backup, Pastiche provides a platform for 

exploring broader problems. In particular, Pastiche shares the challenge of self-interested 

hosts with other collaborative systems. Hosts in such systems attempt to simultaneously 

maximize their benefit and minimize their cost. This can lead to to rampant free-loading, 

where users contribute nothing, and, ultimately, system collapse.

Chapter 4, Chapter 5, and Chapter 6 introduce three approaches to stopping free

loaders. Each chapter addresses the shortcoming of the previous chapters while building 

on their advantages.

Chapter 4 proposes to eliminate free-loaders through a bilateral, equal storage ex

change (BEE) protocol. Hosts are only allowed to store data on those for whom they are 

storing an equal amount in return. Once data has been swapped, hosts query one another 

to ensure that theirs is intact. If a host fails a query, its data is discarded in retaliation. This 

simple protocol ensures that all hosts contribute as much storage as they consume. More 

important, it provides a strong incentive to contribute storage since discarding another
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host’s data will result in the loss of one’s own.

To evaluate BEE, we created a formal model of the protocol. Through analysis of 

the model, we are able to describe the conditions under which a rational host obeys the 

protocol. In some environments, free-loading is optimal. However, under realistic storage 

and bandwidth prices, our model predicts that users will contribute to Pastiche as long 

as others obey BEE. These prices also allow us to give a conservative estimate of the 

monthly cost of using Pastiche. We found that users with up to 24GB of unique data can 

run Pastiche for less than one dollar per month.

While BEE provides a strong incentive to contribute storage, it is, by itself, inadequate. 

First, trades between hosts with asymmetric demand are problematic. If Host A needs 

to store 1GB and Host B needs to store 40GB, it is unclear how they should negotiate 

terms that are satisfactory to both. Second, allocating storage exclusively through bilateral 

exchanges severely over-constrains the system because they require a double coincidence 

o f wants. Trades are only possible between mutually interested parties, which may be 

difficult to locate in a network as large as the Internet. Ideally, allocation would be flexible 

enough to allow nodes to use storage on any preferred host.

Chapter 5 augments BEE with storage claims. A storage claim is an incompressible, 

“junk” storage placeholder that is easy to compute for its owner and must be stored by 

the host responsible for it. Claims allow Pastiche to manufacture BEE when it does not 

arise naturally. Furthermore, claim forwarding establishes transitive arrangements that 

eliminate the need for direct, reciprocal interest between hosts. Through simulation we 

show that forwarding enforces equal consumption and contribution while enabling trades 

between arbitrary nodes.

Unfortunately, claims are not a perfect solution. In the worst case, they can double 

the global storage burden. Forwarding eases this burden, but it creates dependency chains 

along the forwarding path. These chains are vulnerable to cascading failures if data is 

discarded. However, if a claim is forwarded back to its owner to create a cycle, data can 

be rerouted around failures. Chapter 6 shows how Pastiche avoids the overhead of claims 

and the vulnerability of dependency chains through cyclic exchange.

Cyclic exchange provides flexible storage allocation with low network and storage
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overhead. Under cyclic exchange, hosts construct a distributed demand graph based on 

their preferred replica sites. Storage is then allocated along cycles in the graph, creating 

data dependencies between adjacent edges. Within a cycle, contribution and consumption 

are equal. Furthermore, because the graph is created from preferences, hosts can store 

their data exactly where they want. We evaluated cyclic exchange through simulation and 

found that it is robust in the face of low host availability and observed rates of chum.

Chapter 7 provides an overview of backup options available to users and other work 

similar to the techniques used in Pastiche. We evaluated each backup option using four 

criteria: cost, convenience, local safety, and catastrophic safety. Cost is how many dollars 

a user spends to backup her data with a particular approach. Convenience measures the 

effort required to backup data. Local safety measures whether or not data can be recovered 

from a local disk failure and catastrophic safety measures whether or not data can be 

recovered from a local catastrophe. Finally, Chapter 8 gives our concluding thoughts on 

Pastiche.
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CHAPTER 2

BACKGROUND

This chapter aims to give Pastiche a technological and conceptual context. Pastiche 

depends on several enabling technologies. The first is the Pastry peer-to-peer overlay net

work, a scalable, self-organizing, routing and object location infrastructure [97]. Pastiche 

also uses several cryptographic techniques, such as Rabin-fingerprinting [74, 79], cryp

tographic hash functions [82], and convergent encryption [17]. Content-based indexing 

finds common data across different files. Cryptographic hash functions efficiently and 

uniquely summarize an object’s content. Convergent encryption allows sharing without 

compromising privacy.

Pastiche uses several concepts from microeconomics to reason about self-interested 

hosts. In particular, it is important to understand the opportunity costs incurred by users 

and how barter can transform them from a cost of production to a cost of consumption.

2.1 Peer-to-Peer Routing

Pastiche eschews the use of a centralized authority to manage backup sites. Such an 

authority would be a single point of control, limiting scalability and increasing expense. 

Instead, Pastiche relies on Pastry, a scalable, self-organizing, routing and object location 

overlay for peer-to-peer applications. There are many other overlays with properties sim

ilar to Pastry’s, such as CAN [94], Chord [105], and Tapestry [116]. However, we found 

that Pastry’s routing logic best fit our needs.

Each Pastry node is named by a node Id-, the set of all nodeld’s are expected to be 

uniformly distributed in the nodeld space. Throughout the remainder of this dissertation,

8
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we will use the terms “host” and “node” interchangeably. Any two Pastry nodes have 

some way of measuring their proximity to one another. Typically, this metric captures 

some notion of network performance with better connected nodes being “closer” to one 

another.

Each node N  maintains three sets of state: a leaf set, a neighborhood set, and a routing 

table. The leaf set consists of L  nodes; L /2  are those with the closest numerically smaller 

nodelds, and L /2  are the closest larger ones. The neighborhood set of M  nodes contains 

those closest to N  according to the proximity metric.

The routing table supports prefix routing. There is one row per hexadecimal digit in the 

nodeld space. The first row contains a list of nodes whose nodelds differ from the current 

node’s in the first digit; there is one entry for each possible digit value. The second row 

holds a list of nodes whose first digit is the same as the current node’s, but whose second 

digit differs. To route to an arbitrary destination, a packet is forwarded to the node with 

a matching prefix that is at least one digit longer than that of the current node. If such 

a node is not known, the packet is forwarded to a node with an identical prefix, but that 

is numerically closer to the destination in nodeld space. This process continues until the 

destination node appears in the leaf set, after which it is delivered directly. The expected 

number of routing steps is log N , where N  is the number of nodes.

Many positions in the routing table can be satisfied by more than one node. When 

given a choice, Pastry records the closest node according to the proximity metric. As a 

result, the nodes in a routing table sharing a shorter prefix will tend to be nearby since 

there are many such nodes. However, any particular node is likely to be far.

Pastry is self-organizing; nodes can come and go at will. To maintain Pastry’s locality 

properties, a new node must join with one that is nearby according to the proximity metric. 

Pastry provides a seed discovery protocol that finds such a node given an arbitrary starting 

point [21]. Pastiche uses two separate Pastry overlay networks with two different cost 

metrics, but uses them only during replica site discovery. Once a node has identified its 

backup set, all further traffic is routed directly via IP.

Pastiche adds two mechanisms to Pastry. The first is a technique called the lighthouse 

sweep that guarantees that distinct Pastry nodes are queried during replica site discovery.
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The second is a distance metric based on file system contents; this is used to find sites for 

machines with rare installations.

2.2 Cryptography

Pastiche utilizes a number of cryptographic algorithms, including Rabin fingerprint

ing, cryptographic hash functions, and convergent encryption. These techniques provide 

independent, untrusted Pastiche users with a common way to name and represent data.

2.2.1 Identifying Common Data

To minimize storage overhead, Pastiche must find redundant data across versions of 

files, files in a system, and files on different machines. Rsync [108] and Tivoli [2] em

ploy schemes for finding common subsets in two versions of (presumably) the same file. 

However, these techniques cannot easily capture more general forms of sharing.

The challenge is to find sharing—and hence structure— across seemingly unrelated 

files without knowing the underlying structure. Content-based indexing accomplishes this 

by identifying boundary regions, called anchors [74], using Rabin fingerprints [93]. A 

fingerprint is computed for each overlapping A;-byte substring in a file. If the low-order 

bits of a fingerprint match a predetermined value, that offset is marked as an anchor. The 

algorithm only depends on the content of the file, so any pair of hosts with the same file 

will always compute the same anchors. Anchors divide files into chunks.

Since anchors are purely content-driven, editing operations only change the chunks 

they touch, even if they change offsets. This can result in substantial storage savings. For 

example, LBFS reports that the build tree of emacs 20.7 is nearly 40% redundant and that 

the / u s r /  l o c a l  directory is nearly 20% redundant. Content-based indexing found that 

nearly half of the data on my laptop (3.0 GB out of 6.3 GB) was redundant.

2.2.2 Naming Chunks

As with LBFS [79], Pastiche names each chunk by computing a cryptographic hash 

of its contents. Cryptographic hash functions, HQ, have two important properties. First, 

they map a very large set of variable-length—but possibly bounded— inputs to a smaller
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set of fixed-length outputs. Second, they are collision-resistant; given some input x  it is 

computationally infeasible to find some input y such that y ^  x  but H(x)  — H(y) .  Many 

such hash functions exist, including MD5 [96] and SHA-1 [82]. Pastiche and LBFS both 

use SHA-1.

Cryptographic hash functions have been used in a number of security-conscious set

tings, including integrity checking [ 109], digital signatures [80], and digital time-stamping [53]. 

More recently, hash functions have been used in applications beyond security. For exam

ple, they have been used as hints to identify similar files [74] and web pages [19]. They 

have also been used to generate globally-meaningful, self-verifying names for objects in 

a fully decentralized way. Names are self-verifying because any change to the content of 

the object would result in a different name.

The probability that two different chunks will hash to the same value is much lower 

than other sources of error in computer systems. The SHA-1 hash produces a 160-bit 

output, meaning that the probability of random inputs not colliding is approximately 1 — 

2 - 160 or 48 “nines.” By comparison, TCP provides only 8 or 9 nines of assurance that a 

bit-flip will be detected [106]. This allows systems to assume that chunks that hash to the 

same value are in fact the same chunk, and Pastiche adopts this custom. These chunks 

form the basis of on-disk file structures to easily share data between hosts.

The safety of naming by cryptographic hash has been questioned within the software 

systems community [55]. Recent theoretical work has also shown that MD5, which is 

similar in technique to the SHA-1 function used by Pastiche, can be manipulated to pro

duce collisions [114]. While collisions have always been known to theoretically exists, 

actually manufacturing them was believed to be infeasible. Because the SHA-1 and MD5 

algorithms share much of the underlying structure exploited by Wang, et al, it is not un

reasonable to expect SHA-1 to eventually be broken.

Even in light of Wang’s results, Pastiche’s use SHA-1 appears to be safe. This is due 

to the difference between a collision attack and a pre-image attack. A collision attack 

produces two inputs that hash to the same value. For example, an attacker can create x  and 

y  such that H(x)  = H(y).  Wang’s work enables this kind of attack.

A pre-image attack is when the attacker, given a hash value, can find inputs that hash
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to that value. This is a much more serious attack and could undermine the self-verifying 

nature of naming by hash. For example, say that there is a file named H(x)  with content x. 

If an attacker can construct y ^  x  such that H(y)  =  H(x) ,  it can overwrite file H(x)  with 

y. Subsequently verifying the content of the file by “correctly” computing H(y)  = H(x)  

is incorrect, because x y. Pastiche is vulnerable to this attack, but fortunately, Wang’s 

work does not enable it.

2.2.3 Sharing with Confidentiality

A well-chosen replica site has much of a Pastiche node’s data, even before the first 

backup. However, Pastiche must still guarantee the confidentiality and integrity of its par

ticipants’ data using cryptography. There are two cryptographic primitives: encryption 

and decryption. Encryption takes plaintext data, d, and an encryption key, K e, and pro

duces an obfuscation of d, denoted {d}Ke. Decryption takes the obfuscated data, {d}Ke, 

and a decryption key, K d, and returns the original plaintext, d.

Under symmetric encryption, K e = K d. That is, a single key is used to both encrypt 

and decrypt. Asymmetric encryption requires the encryption and decryption keys to be 

different. One key, called the public key is known to all users, while a second private key 

is kept secret by its owner [38]. This allows user A  to encrypt data with user B 's  public key 

to create obfuscated data that can only be decrypted by B 's  private key. In many systems, 

public keys act as unique identifiers [103], like a Pastry nodeld, and managed by a trusted 

public key infrastructure (PKI).

One important decision we made in designing Pastiche was not relying on unique 

public keys or anything else to provide strong identities. Users are expected to create and 

manage their own unique nodeld, for example, by computing the SHA-1 hash of their 

email address. This decision was primarily motivated by cost. To support strong identities 

users must pay a PKI or something similar to manage them, which can be quite expensive. 

Verisign’s cheapest SSL certificate costs $795 over three years.1 This alone is more than 

many users are willing to pay for backup.

Thus, Pastiche users cannot rely on a trusted third party to provide them with encryp

1 Quoted from www. v e r s i g n . com in July, 2005.
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tion keys. Unfortunately, if each client chooses their own cryptographic keys, chunks with 

identical content will be represented differently, precluding sharing. The Farsite file sys

tem solves this problem with convergent encryption [17]. Under convergent encryption, 

each file is encrypted by a symmetric key derived from the file’s contents. Farsite then 

encrypts the file key with a key-encrypting key, known only to the client; this key is stored 

with the file. As a file is shared by more clients, it gains new encrypted keys; each client 

shares the single encrypted file.

Pastiche applies convergent encryption to all on-disk chunks. If a Pastiche node backs 

up a new chunk not already stored on a peer, the peer cannot discover its contents after 

shipment. However, if the peer has that chunk, it knows that the node also stores that data. 

Pastiche allows this small information leak in exchange for increased storage efficiency.

2.3 Microeconomic Concepts

We can use concepts from microeconomics to frame the discussion of self-interested 

Pastiche users. One way of thinking about Pastiche is that each user produces a unique 

good— access to blocks of its excess storage. Users also want to consume a subset of 

goods in the network—the set of hosts where they want to store their backup state. An 

allocation maps a set of produced goods to the users that consume them. Rational users 

attempt to force allocations in which their own benefit is maximized. This occurs when 

they consume their preferred set of goods at minimal personal cost.

Users incur some cost to consume goods, namely the bandwidth required to upload 

data. More important, users also incur costs during production. Because users expend 

excess resources, the costs of acquiring storage and network bandwidth to contribute are 

sunk. A cost is sunk if it has already been incurred, as when a disk or network connection 

has already been purchased.

This does not mean that the cost of production is zero. Users still incur opportunity 

costs. The opportunity cost of an action is the cost of not taking a mutually exclusive, 

alternative action. For example, the opportunity cost of staying at home includes the cost 

of missing a friend on the street multiplied by the probability of such an encounter.

In Pastiche, there are two opportunity costs involved in “producing” access to a block
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of excess storage. The first is the cost of network bandwidth to download a block times the 

likelihood that downloading the block will interfere with normal network traffic. Because 

bandwidth is not infinite, interference is possible, though it may be low.

The second opportunity cost is the cost of allowing another user to read and write 

disk blocks. Contributing storage costs disk bandwidth that can interfere with the owner’s 

disk 10. In addition to direct interference, extraneous disk traffic can pollute on-disk and 

in-memory caches and degrade system performance even if it occurs during “off-peak” 

usage.

Rational users eliminate these opportunity costs by ceasing production. If many users 

behave this way, the collective will collapse. To avoid this fate, Pastiche forces users to the 

incur the opportunity costs of production by transforming them into a cost of consump

tion. Pastiche accomplishes this by allocating storage through a barter economy, in which 

goods are traded for one another. Barter makes production a precondition to consumption. 

As long as the total cost of production is less than the benefit of using Pastiche, users’ 

incentive will be properly aligned.
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CHAPTER 3

PASTICHE ARCHITECTURE

Pastiche nodes form an untrusted collective of machines that provide mutual backup 

services. Because individual machines may come and go [17], each Pastiche node must 

replicate its archival data on more than one peer. Most of these replicas are placed nearby 

to reduce cross-Internet traffic and minimize restore time, though at least one replica must 

be elsewhere to guard against catastrophe. With no effort on the part of the user and modest 

additional disk space, backups are provided automatically. Pastiche is primarily aimed at 

end-user machines, but it can be used for back-end repositories with some care.

With disks between 40% and 70% empty on average, Pastiche cannot afford to keep 

duplicate copies of data on each replica. Luckily, much of the data on a given machine is 

not unique. Aside from personal photographs, most users’ data is imported from a remote 

source rather than produced locally. Operating system and application files are almost 

always copied from another source, as are large music and video archives. Furthermore, 

most data will be shared widely. The default installation of Office 2000 Professional re

quires 217 MB; it is nearly ubiquitous and different installations are largely the same. 

Randomly grouping disparate file systems and coalescing duplicate files produces signifi

cant savings [16]. Pastiche identifies systems with overlap to increase this savings.

Even with these building blocks, Pastiche still faces a number of challenges. How can 

nodes discover backup buddies with substantial overlap without a centralized directory? 

How can nodes reuse their own on-disk state to backup others? How can nodes restore 

files—or an entire machine—without administrative intervention?

Pastiche computes a small abstract of a file system’s content that potential backup bud-

15
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SHA-1

encrypted
chunk

cleartext
chunk

This figure depicts how chunks are stored and named. A cleartext chunk is hashed, 
producing its handle. The handle is used for key generation, and hashed again to produce 
the chunkld. The chunk is stored encrypted by the key and named by the chunkld.

Figure 3.1: Naming and Storing Chunks

dies can inspect to approximate overlap. Pastiche is able to limit the size of the abstract by 

taking advantage of the fact that arbitrary, small pieces of larger logical entities are almost 

always unique and can, therefore, stand for the whole. This allows machines with com

mon installations to find suitable buddies with very little effort. Machines with uncommon 

installations may need to use a Pastry overlay with a new routing metric, coverage rate.

Because sharing is supported at a sub-file granularity, Pastiche provides a new file 

system, chunkstore. Chunkstore stores all data—the host’s as well backup state—in the 

units of sharing, without compromising the performance of common-case workloads.

Archive state is described by a skeleton tree of meta-data. The root of this tree can be 

recovered from the Pastry overlay with only the name and passphrase of the machine to be 

restored. Entire file systems can be restored as easily as a single file.

An examination of file system data shows that abstracts of a few hundred bytes effec

tively discriminate between candidate buddies. Simulations show that Pastiche nodes with 

common installations can easily find others with good overlap. The chunkstore file sys

tem induces overhead of 7.4% on a modified Andrew Benchmark, despite its unoptimized 

layout.

3.1 Chunkstore File system

Pastiche data is stored on disk as chunks. Chunk boundaries are determined by content- 

based indexing, and encrypted with convergent encryption. Chunks carry owner lists, 

which name the set of nodes with an interest in a chunk. Chunks may be stored on a
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machine’s disk for that machine, a backup client, or both. Data chunks are immutable, 

and each chunk persists until no node holds a reference to it. Pastiche ensures that only 

rightful owners are capable of removing a reference to (and possibly deleting) a chunk.

When a newly written file is closed, it is scheduled for chunking. Each chunk c is 

hashed; the result is called the chunk’s handle, Hc. Each handle is used to generate a 

symmetric encryption key, K c, for its chunk. The handle is hashed again to determine the 

public chunkld, Ic, of the chunk. Each chunk is stored on disk encrypted by K c and named 

by I c. This process is illustrated in Figure 3.1.

Before writing a chunk to disk, Pastiche first checks to see if it already exists. If 

so, the local host is added to the owner list if necessary, and the local reference count is 

incremented. Otherwise, the chunk is encrypted, a message authentication code [81] is 

appended, and the chunk is written out to disk with a reference count of one for the local 

owner.

Chunking and writing to disk are deferred to avoid needless overhead for files with 

short lifetimes [113], at the cost of slightly weaker persistence guarantees. The list of 

chunklds that describes a node’s current file system is called its signature.

Data chunks are immutable. When a file is overwritten, its set of constituent chunks 

may change. Any chunks no longer part of the file have their local owner’s reference count 

decremented; if the reference count drops to zero, the local owner is removed. If the owner 

list becomes empty, the chunk’s storage is reclaimed. File deletion is handled similarly.

The meta-data for a file contains the list of handles for the chunks comprising that file, 

plus the usual contents: ownership, permissions, creation and modification times, etc. The 

handles in this list are used to derive the decryption key and chunkld for each constituent 

chunk.

Meta-data chunks are encrypted to protect the handle values and hence cryptographic 

keys. This differs slightly from Farsite’s use of convergent encryption. Farsite stores keys 

with data, encrypting each derived key with a key private to the writing host. Pastiche 

stores handles, and hence keys, in the meta-data blocks.

Unlike data, meta-data is is not chunked and is mutable. Pastiche does not chunk meta

data because it is typically small and unlikely to be shared. Meta-data is mutable to avoid
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cascading writes. Each write to a file changes its constituent chunklds. If meta-data were 

immutable, Pastiche would have to create a new meta-data chunk with a new name for 

every update. This new name would have to be added to the enclosing directory, which 

would also change, and so on to the file system root. Instead, the H c, K c, and Ic for a file’s 

meta-data are computed only at creation time, and are re-used thereafter.

The meta-data object corresponding to a file system root is treated specially: its Hc is 

generated by a host-specific passphrase. As Section 3.5 explains, this passphrase plus the 

machine’s name is all that is required to restore a machine from scratch.

A chunk that is part of another node’s backup state includes that nodeld in its owner 

list. Remote hosts supply a public key with their backup storage requests. Requests to re

move references must be signed by the corresponding secret key, otherwise those requests 

are rejected. This prevents third-party deletions, though it does not prevent the buddy from 

dropping chunks of its own accord.

Storing files directly as chunks simplifies a number of Pastiche’s tasks and imposes 

modest performance costs. It simplifies the implementation of chunk sharing, convergent 

encryption, and backup/restore. Without chunkstore, Pastiche would have to maintain a 

persistent index consistent with on-disk files. This is the approach taken by LBFS [79].

The index would have to be consulted during backup and restore, and complicates 

garbage collection of chunks retired during snapshot. Furthermore, convergent encryption 

requires that each chunk be encrypted separately, complicating a contiguous layout. The 

only alternative would be to detect sharing only at the file level, with a corresponding 

increase in storage costs for backup.

3.2 Abstracts: Finding Redundancy

Much of the long-lived data on a machine is written once and then never overwritten. 

Observations of file type [42] and volume ownership [104] suggest that the amount of data 

written thereafter will be small. In other words, the signature of a node is not likely to 

change much over time. Therefore, if all data had to be shipped to a backup site, the initial 

backup of a freshly installed machine is likely be the most expensive.

An ideal backup buddy for a newly-installed Pastiche node is one that holds a superset
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of the new machine’s data; machines with more complete coverage are preferred to those 

with less. One simple way to find such nodes is to ship the full signature of the new node 

to candidate buddies, and have them report degree of overlap.

Unfortunately, signatures are large: 20 bytes per chunk. Expected chunk size is a func

tion of how anchors are selected. In our implementation, this size is 16 KB, so signatures 

are expected to cost about 1.3 MB per GB of stored data. If this cost were paid only once, 

it might be acceptable. However, a node’s buddy set can change over time as buddies are 

found to be unreliable or as degrees of overlap change.

Rather than send a full signature, Pastiche nodes send a small, random subset of their 

signatures called an abstract. This is motivated by the following observation: most data 

on disk belongs to files that are part of a larger logical entity. For example, a Linux hacker 

with the kernel source tree has largely the same source tree as others working on the same 

version. Any machine holding even a small number of random chunks in common with 

this source tree is likely to hold most of them. Preliminary experiments show that tens of 

chunklds—a few hundred bytes— are enough to distinguish good matches from bad ones. 

This size is similar to that reported by Border for individual web objects [20].

3.3 Overlays: Finding a Set of Buddies

All of a node’s buddies should have substantial overlap with it to reduce storage and 

bandwidth overhead. In addition, most buddies should be nearby to reduce global network 

load and improve restore performance. However, at least one buddy must be located else

where to provide geographic diversity. As a rule of thumb, each Pastiche node maintains 

five buddies.

Pastiche uses two Pastry overlays to facilitate buddy discovery. One is a standard 

Pastry overlay organized by network proximity. The other is organized by file system 

overlap. Every Pastiche node joins a Pastry overlay organized by network distance. Its 

nodeld is a hash of the machine’s fully-qualified domain name. Once it has joined, the 

new node picks a random nodeld and routes a discovery request to it. The discovery 

request contains the new node’s abstract. Each node encountered on the route computes 

its coverage-the fraction of chunks in the abstract stored locally-and returns it.
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This figure depicts how a meta-data chunk is stored on disk. The chunk is stored as a log 
of file states, where each entry in the log represents the state of the file after the update. 
Entries are comprised of an attribute block, a time stamp, and a list of constituent chunk 
handles.

Figure 3.2: Meta-data Chunk Layout

If the initial probe does not generate a sufficient candidate set, the probe process is 

repeated. Subsequent probes are generated by varying the first digit of the original nodeld. 

Since Pastry uses prefix routing, each probe will generate sets of candidates disjoint from 

those already examined. We call this rotating probe a lighthouse sweep.

Nodes with common installations should find a sufficient candidate set easily. How

ever, nodes with rare installations will have more difficulty. Nodes that do not find an 

adequate set during a lighthouse sweep join a second overlay, called the coverage-rate 

overlay. This overlay uses file system overlap rather than network hops as the distance 

metric. The new node chooses backup buddies from its Pastry neighbor set—the set of 

nodes encountered during join with the best coverage available.

The use of coverage rate as a distance metric has interesting implications for Pastry. 

Like network distance, coverage rate does not obey the triangle inequality. Unlike network 

distance, coverage rate is not symmetric; if A holds all of B’s files, the converse is probably 

not true. This means that an individual node must build its routing state based on the 

correct perspective. Likewise, the seeding algorithm must be supplied with the new node’s 

abstract, so that it can compute coverage from the correct point of view.

It is possible for a node to habitually under- or over-report its coverage. If it under

reports, it can avoid being selected as a buddy. If it over-reports, it can attract unsuspecting
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This figure depicts a small skeleton. Each chunk is stored as a log, and each entry in the 
log has references to other chunks. The top chunk begins empty, and then adds another.
The bottom chunk adds a data chunk, appends another to the end, and then removes the 
first chunk.

Figure 3.3: Chunk Skeleton

clients only to discard their backup state. Unfortunately, this is possible no matter who 

computes coverage rates. An honest node can be given a random list of chunklds as an 

abstract; such an abstract is unlikely to match anything. Likewise, nodes can cache and 

report abstracts sent by others with commonly-appearing chunklds, hoping for a false 

match.

3.4 Backup Protocol

A Pastiche node has full control over what, when, and how often to back up. Each 

discrete backup event is viewed as a single snapshot. Nodes can subscribe to a calendar- 

based cycle, a landmark-based scheme [99], or any other schedule. Because a machine 

is responsible for its own archival plan, it keeps a meta-data skeleton for each retained 

snapshot. A file that is not part of the local machine’s current file system, but is part of 

one or more archived snapshots, has a corresponding meta-data entry stored on the local 

machine.

The skeleton for all retained snapshots is stored as a collection of persistent, per-file 

logs, as shown in Figures 3.2 and 3.3. The skeleton representing a machine’s current file 

system state plus all retained snapshots is stored both on the machine and all of its backup 

buddies.

The state necessary to establish a new snapshot consists of three things: the chunks to 

be added to the backup store, the list of chunks to be removed, and the meta-data objects
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in the skeleton that change as a result. We call these the add set, delete set, and meta-data 

list.

The snapshot process begins by shipping the host’s public key. This key will be associ

ated with any new chunks to validate later requests to delete or replace them. The snapshot 

node then forwards the chunklds for elements of the add set. If any of those chunks are 

not already stored on the buddy, the buddy fetches the chunks from the node.

Next, the node sends the delete list. The snapshot host adds a chunkld to the delete list 

only if it does not belong to any snapshot the client wishes to retain. The delete list must 

be signed, and this signature is checked to ensure it matches the public key associated 

with any chunks scheduled for deletion. Note that deletion is not effected immediately. It 

is deferred to the end of the snapshot process.

Finally, the snapshot node sends any updated meta-data chunks. Since they may over

write old meta-data chunks, their chunklds must also be signed. When all state has been 

transferred, the host requests a commit of the checkpoint. Before responding, the buddy 

must ensure that all new chunks, changed meta-data objects, and deleted chunklds are 

stored persistently. Once that is complete, the buddy can respond, and later apply the new 

snapshot by performing the appropriate deletions.

The performance of snapshots is not crucial, since they are asynchronous. The only 

exception is marking chunkstore copy-on-write, which must be done synchronously. How

ever, as with AFS’s volume clone operation [57], this is inexpensive. The load induced on 

a buddy by the backup protocol can be regulated with resource containers [6] or progress- 

based mechanisms [43]. This load is quantified in Section 3.8.2.

The snapshot process is restartable. The most expensive phase—shipping new data 

chunks—makes progress even in the presence of failures, since new chunks are stored as 

they arrive. After the new snapshot is applied, a faithful buddy will have a complete copy 

of the meta-data skeleton, plus all data chunks the skeleton names.

3.5 Restoration

A Pastiche node retains the transitive closure of its archive skeleton, so performing 

partial restores due to inadvertent file deletion is straightforward. Recovering the entire
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machine after a hardware failure requires a way to bootstrap the skeleton. To do so, a 

Pastiche node keeps a copy of its root meta-data object on each member of its network- 

distance leaf set. When a machine must recover from disaster, it rejoins the distance-based 

overlay with the same nodeld, which is computed from its host name. It then obtains its 

root node from one of its leaves, and decrypts it with the key generated from the host’s 

passphrase. Since the root block contains the set of buddies in effect when it was repli

cated, the node can recover all other state. While not currently supported, recovery may 

also be able to take advantage of other, local sources of chunks, such as installation CDs. 

This would improve restore times as well as reduce network traffic.

3.6 Alternative Designs

Before settling on Pastiche’s current approach, we considered an alternative that ap

pears to be a more natural fit to a peer-to-peer substrate. Instead of having a small list of 

backup buddies, each holding a complete backup, this alternative stores each chunk on the 

K  Pastry nodes with nodelds numerically closest to the chunk’s identifier. This alternative 

is commonly called a distributed hash table (DHT) [44, 36] although we will also refer to 

it as the fine-grained approach.

The fine-grained approach has two advantages over Pastiche. First, it ensures that only 

K  backup copies of a chunk exist anywhere in the network. Second, Pastry takes care of 

detecting failed or unresponsive hosts, and individual nodes need not keep track of them.

However, the fine-grained approach also has two primary disadvantages. The first is the 

loss of network proximity for most replicas, increasing cross-Internet traffic and latency 

during restoration. Restoration costs can be avoided by caching along the Pastry route 

taken by backup chunks, but this increases global disk overhead. The second disadvantage 

is that dealing with self-interested nodes is more expensive. Pastiche’s approach to self- 

interest is to require a transaction between hosts for each storage request. By replicating 

at a course-grain, we can amortize the cost of many small object stores across a single 

transaction. This makes the cost of eliminating free-loaders on the order of the replication 

factor rather than on the order of the product of the replication factor and the number of 

objects.
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Another possibility is to replicate at the granularity of a file system sub-tree. In this 

scheme, a Pastiche node would try to find different buddies for uncorrelated packages, 

such as the Windows XP operating system, a collection of “The Matrix” movies, and an 

archive of Grateful Dead live sets. This approach is attractive because it could significantly 

increase disk and bandwidth savings due to overlap with only a minor increase in system 

complexity. Specifically, under sub-tree replication every meta-data chunk would have to 

contain a list of where its children were replicated.

One can imagine other ways of computing the abstract as well. Rather than randomly 

sampling the signature, it might be more effective to utilize the chunkstore structure. For 

example, nodes could compute the abstract by including a single chunk from a file in each 

directory. This would likely capture a unique chunk from each package.

3.7 Implementation

The Pastiche prototype consists of two main components: the chunkstore file system 

and a backup daemon. Chunkstore is written in C and is implemented primarily in user 

space for simplicity. The user-space component is called p c l i e n t d .  A small, in-kemel 

portion implements the vnode interface [67], integrating chunkstore with Linux 2.4.18. 

Pastiche uses the XFS device from Aria [115], an open source AFS implementation, for 

this in-kemel portion.

Data is stored as individual chunks in an underlying file system. For performance 

reasons, Pastiche also maintains a cache of contiguous, decrypted copies of recently used 

files, called container files. Our prototype does not yet support whole-machine backup, 

because we have not implemented booting a kernel from chunkstore.

The XFS device sees only container files, and p c l i e n t d  acts as mediator between 

the device, the container files, and chunkstore. When an application requests a file that is 

not in a container, p c l i e n t d  retrieves the meta-data chunk for that file from chunkstore 

and uses it to form a contiguous container file, p c l i e n t d  then returns the inode of the 

container file to the device, and subsequent operations are applied to the container. The 

container file cache is managed with LRU replacement, given a maximum size.

p c l i e n t d  is notified of each c l o s e .  If the corresponding file is dirty, it is scheduled
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for chunking. Chunking is deferred for 30 seconds, to avoid needless overhead for short

lived files [113]. We implemented convergent encryption using the o p e n s s l  -  0 . 9 . 7  - b e t a 3  

cryptographic library. Each chunk was encrypted using a 128-bit key and the AES stream 

cipher [37].

Container files restore the parity between logical and on-disk proximity that storing 

chunks individually eliminates. However, storing chunks individually still induces some 

storage overhead. By storing each chunk separately, Pastiche files will yield more inter

nal fragmentation than if they had been stored contiguously. Recall that content-based 

indexing generates chunks by examining the lower k bits in a Rabin fingerprint; if these 

bits match some target value, that offset is marked as a chunk boundary. On average, one 

would expect to lose half of a disk block per chunk. So, we set k  to 14, giving an expected 

chunk size of 16KB and expected fragmentation overhead to 3.1%.

Meta-data chunks are stored as a log of updates to the file. Each time a file is re

chunked, the list of its constituent chunks is appended to the log. Deletion is represented 

with a terminal log entry, p c l i e n t d  only appends to these logs, and thus never removes 

a chunk from chunkstore.

The backup daemon, called b a c k u p d , is written in C and uses the rpc2 remote pro

cedure call package for communication [102], It acts as both the backup server and client.

The server manages remote requests for storage and restoration, while the client super

vises selection of buddies and snapshots. Additionally, b a c k u p d  cleans meta-data logs 

and reaps deleted chunks.

b a c k u p d  communicates with p c l i e n t d  through file locking of on-disk chunks.

This is simple and can be efficient, since b a c k u p d  need not hold all locks to guarantee 

a consistent snapshot. Once the root meta-data chunk is read, all reachable chunks are 

guaranteed to remain reachable, since none of them will be deleted by p c l i e n t d .  Some 

meta-data chunks may still become tainted [66] with additional log entries. However, these 

entries can be detected via timestamps during backup and restore, rendering their inclusion 

in a snapshot harmless.

We also provide several utilities to allow users to manage the file system: f  o r c e s n a p  

forces b a c k u p d  to take a system snapshot immediately, f  o r c e c h u n k  forces p c i  i e n t d
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to chunk all files in its queue immediately, and r f  i l e  restores a file or subtree to a pre

vious state. Each utility communicates with p c l i e n t d  and b a c k u p d  through Unix 

domain sockets.

3.8 Evaluation

In evaluating our prototype, we set out to answer the following questions:

• What is the performance of the file system? Which operations perform well and 

which perform badly?

• How long do backups and restores take?

• How large must fingerprints be? Is the lighthouse sweep able to find buddies?

• Does the coverage-rate overlay yield suitable backup buddies?

• Are the costs to detect malicious nodes reasonable?

All experiments were run on machines with a 550 MHz Pentium III Xeon processor, 

256MB of memory, and a 10k RPM SCSI Ultra wide disk, with 4.7 ms seek time, 3.0 

ms rotational latency, and 41 MB/s peak throughput.

3.8.1 Performance

What is the overhead induced by chunkstore? To answer this, we compare the per

formance of chunkstore to the underlying, native file system, e x t 2 f s .  We measure this 

overhead with a modified Andrew Benchmark [57]. Our benchmark is identical to the 

original in form, but uses the a p a c h e  1 . 3 . 2 6  source tree. This source tree is 9.6MB 

in size; when compiled, the tree occupies 12MB.

We ran five trials; the results are shown in Table 3.1. While the m ake step is not I/O 

bound, it does experience slight overhead. This is due in part to the cost of computing the 

Rabin fingerprints of the copied tree and the extra cost of creating and deleting files. The 

copied data is scheduled to be chunked when written, and 30 seconds later—during the 

m ake step— chunking begins.

The total overhead of 7.4% is reasonable, though the c o p y  phase is expensive; it 

takes 80% longer in chunkstore. Workloads with intensive I/O will likely experience very 

poor performance. We believe that this overhead is due to excess meta-data management
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AB phase ext2fs chunkstore
m k d ir 1.23 (0.04) 1.03 (0.05)
cp 3.47 (0.28) 6.26 (0.16)
s c a n d i r 0.0 (0) 0.03 (0)
c a t 1.75 (0.02) 2.23 (0.02)
m ake 38.62 (0.45) 38.88 (0.5)
total 45.08 (0.39) 48.43 (0.58)

This table presents the results of a modified Andrew Benchmark. Times are reported in 
seconds, and standard deviations are given in parentheses.

Table 3.1: Andrew Benchmark

Task ext2fs chunkstore
w id e  c r e a t e  
w id e  m k d ir  
d e e p  m k d ir  
b u lk  x f e r

2.44 (0.06) 
2.30 (0.02) 
4.07 (0.02) 

12.79 (0.01)

6.99 (0.02) 
6.31 (0.03) 
5.64 (0.01) 

12.75 (0.02)

This figure presents the results of file creation and I/O throughput benchmarks. Times 
are reported in seconds, and standard deviations are given in parentheses.

Table 3.2: Micro-benchmarks

in chunkstore, rather than limits on peak I/O throughput. To confirm our hypothesis, we 

performed several micro-benchmarks to isolate the operations involved in copying a source 

tree - writing data and creating files.

To examine chunkstore’s performance when creating files and directories, we ran three 

different experiments—w id e  c r e a t e ,  w id e  m k d ir , and d e e p  m k d ir . In w id e  

c r e a t e ,  1000 new files were created in the same directory. In w id e  m k d ir  1000 new 

directories were created in the same directory, and in d e e p  m k d ir  1000 new directories 

were made recursively inside of one another. We again ran five trials of each; the results 

are in Table 3.2.

w id e  c r e a t e a n d w i d e  m k d ir  each ran about 186% and 174% slower than e x t  2 f s ,  

respectively, while d e e p  m k d ir  ran about 38% slower. Chunkstore’s poor performance 

is due to meta-data chunk and container file maintenance. When chunkstore creates a file, 

it must update or create three files: a new meta-data chunk, a new container file, and the 

parent meta-data chunk.
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Task time
cp 6.26 (0.07)
b a c k u p 6.55 (0.01)
rm 1.24 (0.01)
r e s t o r e 5.54 (0.07)
n f s  cp 3.76 (0.16)

This figure presents the results of the backup and restore experiment. Times are reported
in seconds, and standard deviations are given in parentheses.

Table 3.3: Backup and Restore

The d e e p  m k d ir  experiment shows that the number of entries in the parent directory 

is also significant. This is because of the way directory entries are laid out in the meta

data chunks and the container files. In both cases, directory entries are stored in a linear 

array. Our current implementation rewrites the entire list to the container file and chunk 

whenever a new entry is added. During d e e p  m k d ir , there is only ever one entry in the 

list, which makes creating a file faster.

It is also interesting to note that w id e  m k d ir  is somewhat faster than w id e  c r e a t e .  

The reason for this is related to how the in-kemel XFS device handles file and direc

tory creation. When a regular file is created, the XFS device makes an extra upcall to 

p c l i e n t d  to close the newly created file, and does not make this call when a directory 

is created.

To further verify that I/O throughput was not responsible for chunkstore’s slow c o p y  

phase in the modified Andrew Benchmark, we also ran a b u lk  x f  e r  experiment. In 

this experiment, a new file was created, 256MB of data were written to it, and then the 

file was closed. As before, we ran five trials; the results are in Table 3.2. Chunkstore 

and e x t 2 f s  performed within 1% of each other, meaning that their I/O throughput are 

statistically identical.

3.8.2 Backing Up and Recovering a File System

To determine the performance of our backup and restore utilities, we applied them to 

a file system consisting of the openssl-0.9.7-beta3 source tree. This 13.4MB tree of 1641 

files and 109 directories is stored in Pastiche as 4004 chunks.
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Each of five trials consisted of four phases - copying the source tree into the file system, 

sending it to a backup buddy, removing the local source tree, and restoring the source tree 

from the backup buddy. Pastiche’s backup and restore performs comparably to the time to 

copy the source tree over NFS. The results are in Table 3.3.

It should also be noted that the demand on resources the buddy experiences while 

carrying out backup and restore is very bursty. During the five trials, b a c k u p d  used a 

maximum of 8MB of memory, averaged 12 disk transfers/sec with a maximum of 414 

transfers/sec, and averaged a 70% idle CPU with a minimum of 13%.

3.8.3 Finding Buddies

Next we turn our attention to the buddy discovery process. There are three questions 

to answer. First, how large must an abstract be to discriminate good buddy candidates 

from bad ones? Second, how effective is the lighthouse sweep in discovering buddies? 

Third, how effective is the coverage-rate overlay in discovering buddies? To answer the 

first question, we took the signatures of seventeen machines at Michigan. These machines 

run Windows, Linux, Solaris, and various flavors of BSD. We also took the signatures of 

two freshly installed machines.

The first ran Windows 98 with an Office 2000 Professional installation, but without 

any service packs applied. This machine held roughly 90 thousand chunks1. The second 

was a Linux machine running a Debian u n s t a b l e  release, configured as a conventional 

workstation with development and document processing tools. This machine held ap

proximately 270 thousand chunks. We chose this machine as a worst case. Some of our 

comparison machines are Debian, but only one runs the u n s t a b l e  distribution. This 

distribution changes quickly, and this machine is updated infrequently.

We computed the actual coverage for each of these machines given full signatures. To 

estimate the impact of smaller abstracts on coverage estimates, we took uniform random 

samples of the signature at rates of 10%, 1%, 0.1%, and 0.01%; there are six samples at 

each rate.

’For this experiment, we used a smaller expected chunk size of 4KB; Pastiche’s larger chunks may 
require slightly larger sampling rates.
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Figure 3.4: Varying Abstract Size
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The results for the Windows 98 machine are plotted in Figure 3.4(a). The x  axis 

gives sampling rate, and the y  axis shows coverage rate. The 100% “sample” shows exact 

coverage; each of the others is an estimate given a smaller sample. Each group of bars 

represents the coverage estimate for each of the seventeen hosts. Within each group, the 

hosts are sorted by actual coverage rate, from highest to lowest. The top five matches are 

identified in the legend, p o l y s t y r e n e  is a Win98 machine running Office 2000, with 

all relevant service packs and security updates applied.

The estimates are surprisingly independent of sample size; the lowest rate produces 

abstracts of around 10 chunklds. Only s o a r ’s estimate changes appreciably. However, 

its coverage rate is comparable to g a r c i a ’s and b n o b le ’s; choosing either of the latter 

in favor of s o a r  is of no consequence.

Figure 3.4(b) shows the results for our Linux machine, the top eight matches are identi

fied in the legend. The overall match rates are lower, but machines with other distributions 

still have substantial matches. As with the Windows 98 host, coverage estimates do not 

change materially as abstract sizes go down. Interestingly, b n o b le ,  a Windows 2000 

machine, has a coverage rate for this Debian machine of almost 15%. This is because 

b n o b le  also has a s t a b l e  release of Debian, installed in a VMware virtual machine; 

the VMware disk image is stored as a regular file in Windows. Ordinarily, files form im

plicit chunk boundaries in content-based indexing. When viewed from the windows host, 

all of these file boundaries disappear. Despite this, content-based indexing is still able to 

find substantial overlap.

Small abstracts are effective only if they are delivered to a host that can provide good 

coverage. We conducted a simulation to determine how effectively lighthouse sweeps find 

useful buddies. This simulation uses SimPastry [76], a Pastry simulation/visualization 

tool.

For the simulation, we populated a graph with 50 thousand Pastiche nodes drawn from 

a distribution of 11 types. 30% of all nodes are the first type, types two and three each 

comprise 20% of all nodes, types four and five each comprise 10%, type six comprises 

5%, and types seven through eleven each represent 1% of the population.

We simulated 25 different Pastry networks under these conditions. For each network,
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Figure 3.5: Expected Number of Buddies

we randomly selected 1000 nodes of each type, and performed a lighthouse sweep from 

that node, counting the number of hosts of identical type found during the sweep. The 

results are shown in Figure 3.5. Each bar gives the average number of matches found per 

sweep for each category of popularity; the error bars show one standard deviation.

As expected, common nodes with representation of 10% or higher should find an ade

quate number of buddies on the distance overlay. Those with lower popularity will need to 

join the coverage-rate overlay as well. We built a Pastry simulator to determine the effec

tiveness of this network. Our experiments involved 10,000 nodes. Each node was assigned 

to one of a thousand species, one of a hundred genera, and one of ten orders. Nodes of the 

same order share 20% of their content; nodes of the same genus, 30%; and nodes of the 

same species, 70%. Only nodes of the same species can serve as backup buddies for one 

another.

The results of our simulations are in Figure 3.6. The x  axis gives the size of the 

neighborhood set, and the y axis shows the percent of all nodes who found a given number 

of buddies. We ran four series of trials, varying the size of the neighborhood set. We 

found that for a neighborhood set size of 256, 85% were able to find at least one buddy in 

its routing table, and 72% were able to find at least 5.

The results show that most nodes should be able to find buddies in the coverage-rate 

overlay. It also shows how important a role the neighborhood set plays in locating buddies. 

Increasing the neighborhood set from 0 to 256 increases the percent of nodes who can find 

at least one buddy from 38% to 85%; the percent of nodes who can find at least 5 increases
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Figure 3.6: Coverage-rate Simulation Results

from 1% to 72%. The Pastry group has deprecated the neighborhood set, but this result 

shows that removing it may make it difficult for nodes with uncommon installations to 

locate buddies.

3.9 Discussion

Pastiche depends on nodes contributing excess storage to the collective. In some envi

ronments nodes will reliably contribute, although it may require outside encouragement. 

For example, within an organization, administrators likely have enough control over ma

chines to regulate how much storage users consume and contribute. However, in the ab

sence of such a governing entity or an altruistic membership, Pastiche could face two 

problems as a result of its self-interested hosts: over-consumption and free-loading.

Over-consumption occurs when greedy hosts aggressively consume space by using 

storage on many hosts. This is commonly referred to as the “tragedy of the commons.” [54] 

One way to address this problem is to place nodes into equivalence classes based on the 

resources they consume. Each node could monitor the overall storage costs imposed by 

its backup clients, and compare these costs to its own usage. Those that are much more 

space-intensive are ejected, and must search for a more suitable partner. Unfortunately, 

this mechanism can be easily circumvented by creating multiple identities. This is known 

as the Sybil attack [41].

Another approach is to force nodes to pay some price for the storage they use. For ex
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ample, nodes might have to solve cryptographic puzzles [65] in proportion to the amount 

of storage they occupy. Forging identities is no defense against this, nor is spreading 

snapshots across more than the usual number of buddies. However, this solution is unsat

isfactory for two reasons. First, it trades something other than storage for storage space. 

CPU cycles and blocks of storage are incommensurable resources, which makes pricing 

one in terms of the other problematic. Second, not all nodes will have equivalent process

ing power, so it is difficult to provision the solution properly. The amount of storage a node 

is allowed to consume would be more fairly bound to the amount of storage it contributes 

rather than the idleness of its processor.

The third approach is to account for space with some form of electronic currency [24]. 

It is sufficient to use an off-line protocol [13]; some amount of double-spending is tolerable 

as long as abusers can be detected eventually. However, currency accounting requires that 

backup be goods atomic [110]; the exchange of currency and backup state must be an 

atomic transaction. Once a node has recirculated any received currency, there is no way 

to punish the node if it discards the data it is responsible for. Also, any fiat currency must 

be certified by a trusted authority. This would incur costs similar to those of a public key 

infrastructure.

The second potential problem is free-loading. Free-loading is when nodes refuse to 

contribute storage to the collective. It is similar to over-consumption, but in some ways 

is more difficult. Consumption can be limited by exacting a toll for each consumed unit, 

such as CPU cycles or currency. However, if excess local storage is more valuable than 

what it is exchanged for, nodes have no incentive to contribute. This is most clearly true 

of the cryptographic puzzle scheme, where puzzle solutions have no inherent value. If fiat 

currency were used, nodes would need to generate enough revenue selling access to their 

storage to pay the trusted authority to certify the currency. It is unclear how common such 

a scenario might be. Thus, to deal with self-interest, Pastiche must provide hosts with an 

incentive to share their excess storage.
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CHAPTER 4 

BILATERAL, EQUAL EXCHANGE

Pastiche networks with rampant free-loading are not sustainable. If the demand for 

storage is much more than the supply, what storage is available will quickly become occu

pied. The result would be substantial unmet demand, some of which will fall on the very 

nodes who are contributing to the collective. The danger is that contributers will opt out if 

the cost of sharing outweighs the benefit. Losing part of the already limited storage sup

ply will lead to even greater unmet demand and more unsatisfied contributers, triggering a 

series of cascading withdrawals and the collapse of the storage pool.

Pastiche assumes that users are self-interested, or rational. Rational users want to max

imize the difference between the value and cost of using Pastiche. In addition to normal 

costs of running networked software such as the security risks posed by bugs and addi

tional CPU and memory overhead of another process, running Pastiche costs storage and 

network bandwidth contributions to the collective. Pastiche shares the goal of building 

services from privately owned over-capacity with computational technologies such as grid 

computing [4] and wireless mesh networking [52] as well as with non-computational ser

vices like carpooling. Benkler [10] calls this mode of production “social sharing” and has 

identified two fundamental disincentives to contribution.

First, users cannot be expected to compromise their security. For example, if a driver 

carpools with someone into work, they must not feel physically endangered by the rider. 

Second, services must address the opportunity cost of contributing. In the case of car- 

pooling, the opportunity cost is the additional time it takes to pick up and drop off other 

passengers. To compensate for this opportunity cost, many cities give cars with multiple

35
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passengers access to less congested High Occupancy Vehicle (HOV) lanes. In the absence 

of a trusted authority, Pastiche must address both disincentives to avoid collapsing the 

storage pool.

The rest of this chapter is organized as follows. In Section 4.1, we explore the appli

cability of Benkler’s disincentives to Pastiche. We can use observations of peer-to-peer 

file sharing to give us an idea of how these disincentives will affect Pastiche users. The 

wide use of file sharing software indicates that users are willing to incur some extra se

curity risk to run software that provides a valuable service. However, several studies of 

users’ behavior in file sharing indicate that opportunity costs present a strong disincentive 

to contribution.

In Section 4.2, we describe our first building block for encouraging contribution, called 

bilateral, equal exchange (BEE). This protocol ensures that all nodes contribute as much 

storage as they consume and punishes nodes who attempt to cheat by discarding their data.

Unfortunately, simple BEE is too severe in practice. Nodes in peer-to-peer networks 

often experience periods of temporary disconnectedness called transient failures. These 

are not attempts to cheat, but can appear to be under BEE. In Section 4.3, we explore 

the challenges of transient failure in BEE and offer a technique called probabilistic dis

card to address it. Probabilistic discard attempts to punish chronic abusers while allowing 

transiently failed users to retain their data.

Finally, in Section 4.4 we present a formal model of BEE. Analysis of the model shows 

that rational nodes will obey the protocol under realistic conditions. More important, this 

model provides a conservative estimate of to cost of running Pastiche. According to this 

calculation, running Pastiche under BEE costs less than one dollar per month for even up 

to 24GB of unique data, making Pastiche significantly less expensive than existing backup 

options.

4.1 Disincentives to Contribute

Benkler identifies two fundamental disincentives to contributing to the “social shar

ing” model of production utilized by Pastiche—security concerns and opportunity costs. 

Security concerns are inherent to the Internet. Hackers and viruses are a fact of on-line
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life and Pastiche cannot make these risks disappear. However, sharing excess storage does 

not increase this threat. Users do not compromise their security by storing other nodes’ 

data because it is only stored and never executed. Pastiche does expose some user infor

mation to enable inter-host data sharing, but users can limit this exposure by encrypting 

their blocks with independently chosen keys.

Contributing to Pastiche also requires users to run p c l i e n t d .  This incurs additional 

security risks, because p c l i e n t d  might contain bugs that can be exploited by hackers. 

However, this risk is no greater than the risk of running a peer-to-peer file sharing client. 

A study by ITIC of online activity for November, 2004 found that there were nearly 10 

million file sharers on-line at any moment, an increase of just over 2% from November, 

2003 [62]. Security worries have not deterred users from running file sharing software and 

they should not deter Pastiche users from running p c l i e n t d  either.

Unfortunately, Pastiche users do incur opportunity costs for contributing their excess 

disk space. Disks are mostly empty, but granting access to unused storage may interfere 

with normal disk IO, especially during queries. Furthermore, although most network band

width goes unused, the likelihood that a Pastiche data transfer will interfere with normal 

network use is also non-zero. Unless storage and bandwidth capacity are infinite, users 

will always incur a positive opportunity costs due to the resource contention caused by 

congestion. It is in rational users’ interest to minimize these costs by contributing as little 

as possible to secure their backup state.

Strategic behavior is not merely an academic invention. Computer users have demon

strated strategic behavior in a number of settings. A four month study of the Mirage [83] 

auction-based resource allocator for sensor network test-beds found that many users tried 

to game the auction protocol. Many on-line game players run altered clients that tilt the 

field in their favor. This form of cheating was one of the primary motivations for the Terra 

secure computing platform [49].

The examples of strategic behavior most germane to Pastiche come from peer-to-peer 

file sharing, where users must also decide whether or not to contribute their own excess 

resources. A study of Gnutella [1] found that two thirds of the participants provide no files 

for other users. The most generous 1% of hosts serviced nearly half of all requests. A
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later study of Gnutella and Napster [101] confirms this general trend, though with a less 

dramatic fraction of free-loaders. This study also found that almost one third of all Napster 

users under-reported their available bandwidth to avoid being selected as a download site. 

These results demonstrate that the opportunity costs of contribution drive file sharers to 

withhold their excess resources.

Despite this, file sharing gracefully accommodates free-loading. Might Pastiche be 

able to as well? To see why not, we must draw a distinction between exclusionary and 

nonexclusionary resources.

Nonexclusionary resources can be used by multiple parties at once. Files are nonexclu

sionary since users can access them simultaneously. File sharers can queue to download a 

file and then use a local copy later. Files are similar to weather reports available to farmers, 

research available to scientists, or advertising available to consumers.

On the other hand, assuming there is no aggregation, the bandwidth used by both file 

sharers and Pastiche is exclusionary. This is because a unit of bandwidth can only be 

utilized by the source and destination of the packet it carries. However, bandwidth is 

also renewable since it becomes available again once a packet has been processed. In the 

presence of a deficit, bandwidth’s exclusivity can curb file sharing, but its renewability 

will prevent a collapse.

Disk space, on the other hand, is both exclusionary and nonrenewable. Storage space 

cannot be occupied by multiple users’ data at once and is not replenished over time. This 

is why the storage deficits induced by free-loading are such a threat to Pastiche. Users 

cannot simply queue once the storage supply is fully utilized. Thus, to be viable, Pastiche 

must eliminate free-loading.

4.2 The Bilateral, Equal Exchange Protocol

Pastiche cannot eliminate the opportunity costs of sharing. However, it can eliminate 

the possibility of cascading withdrawals by ensuring that the cost of participation is never 

greater than the benefit. We do this by linking the reliability of nodes’ backup state to their 

level of contribution. The more storage a node contributes, the more replicas it is allowed 

to create. If a node chooses to contribute nothing, it eventually loses access to the shared
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This figure demonstrates how a node can respond to a query. The querying node supplies 
an initial value ho, which is prepended to the first data object, ai, and hashed to produce 
h\. This is then prepended to the second object, 0 2 , and hashed, and so on. The storing 
node only needs to return the final hash hn.

Figure 4.1: Query response construction.

storage pool.

One way to bind levels of service to contribution is to allocate excess storage through 

bilateral, equal exchanges (BEE). That is, node A  may store data on node B  if and only if 

B  may also store the same amount of data on A. B  can periodically query A  to see if its 

data is still held by A, and vice versa. If a node fails a query, its data is discarded. Col

lectively, these pairwise checks ensure that each node contributes as much as it consumes. 

Furthermore, the threat of a retaliatory discard provides a strong incentive to contribute 

and maintain storage. Nodes cannot use anyone else’s storage without giving up an equal 

amount of their own.

For these trades to make sense, we must assume that a unit of remote storage is more 

valuable than a unit of local storage. This is reasonable since recovery would be impossible 

without copying data to another disk.

The overhead of the protocol is also very low. Because querying is only intended to 

demonstrate that data is stored rather than to examine its contents, queries can be made 

relatively infrequently. A node could reasonably query its replica sites every few hours or 

even once a day. Similarly, queries need not be answered immediately. This is important 

because nodes might want to delay responding to a query when they are busy. There are 

many ways to minimize the burden of answering a query, including resource containers [6], 

progress-based mechanisms [43], and free disk bandwidth [71].

The network bandwidth required to satisfy a query can be reduced to a single SHA-1 

hash as well. There is no need to return the entire data object to prove that it is still stored. 

When querying, nodes can send a unique value, ho, along with the list of n  objects they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4 0

wish to verify. Responding nodes prepend ho to the first object in the list and compute the 

SHA-1 hash of this concatenation. This hash is called h } and is prepended to the second 

object to compute h2 and so on. The responding node only needs to return hn to prove that 

it is storing all the objects it is responsible for. This process is shown in Figure 4.1. The 

overhead of querying is described in Section 5.4.1.

Querying under the threat of discard provides a strong incentive to maintain storage 

for others, but it does not provide an incentive to participate in recovery. This is because 

there is no way to reciprocate a recovery. If node A  and node B  exchange backup state 

and A  fails, A  will have lost all of B's  data and cannot help B  restore. Knowing this, 

B  could discard A 's data once it received enough data requests to indicate an in-progress 

recovery. Because A  has already lost B's  data, there is no way for A  to punish B. If all 

nodes behave this way, recovery will be impossible.

To create an incentive to participate in recoveries, Pastiche nodes carry out randomly 

scheduled fire drills. A fire drill is false, full recovery that is indistinguishable from the 

real thing. If a node fails to participate in a fire drill, it risks having its data discarded. 

Because of this, nodes must participate in recoveries because they will look exactly like 

a fire drill. In practice, fire drills should be relatively rare events to be scheduled on the 

order of weeks or even months.

Interestingly, fire drills also allow nodes to detect when their data has been rerouted to 

their own disk. In this attack, whenever node A  gives node B  a data block to store, node 

B  hands it right back to A  to store. B  could conceal its attack by encrypting each block 

from A  before sending it back. To answer data queries, B  would request A's re-encrypted 

data from A. A  would never know it was storing its own data. However, because fire drills 

simulate real crashes, B  may not retrieve data from A  while a fire drill is in progress and 

B's  attack will be exposed.

Another important property of bilateral, equal exchange is that it does not require cer

tified identities or trusted third parties and does not enable the Sybil attack. Other ap

proaches that utilize reputation systems [12], currency [61], distributed auditing [84], or 

micro-payments [60] require a trusted infrastructure, but these services are not free. The 

only way their use can scale to a large collective is to exact a fee from each user. This is
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precisely the kind of additional cost for which backup users have shown little tolerance.

It is important to note that we have not attempted to force users to use their full band

width capacity, nor will we. BEE is only concerned with storage. If a user wants to throttle 

their bandwidth to slow the rate of replication or rate of restore, Pastiche cannot stop them. 

Of course, if a node fails to satisfactorily participate in fire drills, it risks being dropped by 

its buddies.

4.3 Transient Failure

Nodes in peer to peer networks suffer from frequent transient failures [17]. Distin

guishing between a node that is trying to cheat and one that experiences a transient failure 

is both difficult and important. Nodes should not lose all of their remote data because of a 

temporary loss of connectivity or failure. This is especially true for a backup service like 

Pastiche. When a node’s disk dies, it is unable to respond to queries. If the node’s remote 

data is then discarded because it fails a query, restore will be impossible!

One potential solution gives nodes a grace period for responding to a query. If this 

grace period is longer than a conservative estimate to recover a failed node—on the order 

of many days to weeks—then honest but unfortunate peers will not be penalized. This 

scheme tolerates transient failure, but it also leads to a straightforward grace period at

tack [69].

A node could choose replicas for grace periods at a time, never store anything in return, 

and select new peers once the grace period expires. This is easy to do in systems like 

Pastiche, where nodes have full discretion in selecting replica sites. It is also possible to 

mount this attack in a content-addressable system like a DHT. For example, nodes could 

encrypt their objects under a rotating key scheduled every grace period. The resulting 

objects have the same semantic content as their source, but different object identifiers, and 

will thus be stored on different replica sets.

The grace period attack exploits the fact that node only discard data at the end of the 

grace period and never before. Pastiche’s approach retains the notion of a grace period, 

but clears cheaters’ data through independent, probabilistic discards.

Each day, buddies independently discard an object with probability p, where p grows
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exponentially with the number of consecutively failed queries. If a node never fails a query 

p = 0 and if a node fails a grace period number of consecutive queries, p = 1. We denote 

the discard probability after i consecutively failed queries, pi. Besides i, buddies only need 

the normative replication factor, denoted r , to compute p .̂

Since data is replicated, probabilistic discard protects transiently failed nodes. If a 

node is temporarily disconnected and as a result fails consecutive queries from its buddies, 

the likelihood that each buddy will simultaneously discard the object is extremely low. If 

a subset of buddies do discard an object, these copies can be reinstated from the existing 

ones.

There are two complementary strategies for defeating probabilistic discard that imme

diately come to mind. First, as in the original grace period attack, a cheating node could 

create a brand new set of replicas frequently. In addition to this, a node could create many 

replicas to increase the expected number of consecutively failed queries before losing an 

object. A cheating node would have to create new replicas fast enough to ensure that there 

is at least one copy of each object at all times. As we will see, the bandwidth required to 

create enough replicas fast enough is prohibitive for most nodes.

To see why pi must grow exponentially, assume that we would like an unresponsive 

node to lose one replica for each consecutively failed query. For the ith consecutive failed 

query, each replica site computes

1

If the unresponsive node has n  replicas, the expected number of discarded replicas after 

failing the first query of each replica site is D\ = More generally, Di = discards

are expected after failing the ith consecutive query of each site. Thus, Dr = n — A —i, 

which means that after r consecutive failed queries at each site, all n  replicas should be 

discarded.

Unfortunately this pt is too severe. If p\ were a node with n  replicas and one 

object can expect all n  buddies to simultaneously discard that object after missing one 

consecutive query with probability This means that for r  = n  = 5, a node can expect to 

lose an object after missing a single query at each buddies only 55  = 3,125 times.
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This figure graphs query generation versus the expected number of times a node can miss 
that many consecutive queries before losing an object. The normative replication factor 
for the system is assumed to be five (r = 5), but the adversary populates n replicas. Each 
node owns 2,000,000 objects. Each series represents the number of replicas actually 
created.

Figure 4.2: Expected consecutively missed queries before object loss.

This is far too harsh, since nodes are likely to have many more than one object, and 

replica sites probabilistically discard each object stored after a query has been missed. For 

example, a node with 3,125 objects can expect to lose one object every time it misses a 

single consecutive query at all of its buddies. A typical Pastiche node might have as many 

as 2,000,000 objects, equal to about 32GB of state. With five replicas, this node can expect 

to lose 640 objects the first time it is disconnected for a full day.

Instead, we can make Pi convex with respect to i so that failures become more harmful 

as consecutive queries are missed. This allows pi to be very low for small i so that honest 

nodes are protected and allows Pi to approach 1 as i comes closer to the grace period so 

that cheaters are punished. While there are an infinite number of shapes that pi could take, 

we will use a simple, exponential curve, as follows:

For r = 5, a node with 2,000,000 objects can expect to lose an object after missing a query 

at each buddy once per 1.49 x 1011 times. If queries are made on a daily basis, this would 

require 2 x 4.08 x 108 years of alternatively missing and then satisfying a query. This 

should protect users who are regularly disconnected for short periods of time.

Just as important, habitual cheaters are still punished. The expected number of times 

that specific numbers of consecutive queries can be missed before losing an object is 

graphed for various replication factors in Figure 4.2. The greater the replication factor,
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the less likely an object will be lost. However, as the figure shows, cheating nodes can 

expect to lose an object eventually, even when the replication factor is double the norm.

Users commonly experience one or two day periods of disconnectedness in conjunc

tion with the end of the work day or weekend [17]. It is important that Pastiche not punish 

users for these normal unresponsive spells. Unfortunately, with n  = r  = 5, 2,000,000 ob

jects, users may turn off their machines for more than two days only seven times over 

before they can expect to lose an object. Adding an additional replica raises the number 

of three day outages to 194, which is reasonable. Even a behaving node will occasionally 

miss three consecutive queries, but it should happen infrequently.

These curves descend quickly, however. The expected number of lost objects after 

missing four consecutive query jumps to 488. Because of this, for the first three days, 

queries should be scheduled everyday, while the fourth query should be scheduled a week 

later. Cheating nodes can still expect to eventually lose objects after just three days because 

of the number of times they will miss three consecutive queries.

Still, as alluded to earlier, a cheating node might be able to defeat probabilistic discard 

by creating many replicas and then replacing them before it expects to lose an object. 

A node with seven replicas can expect to lose an object after missing three consecutive 

queries 5,230 times. This is fairly risky. However, a node with ten replicas can expect 

to miss three consecutive queries over 100 million times before losing an object. For this 

node, missing three consecutive queries is probably safe, even if it expects to lose two 

objects if it fails four consecutive queries. Fortunately, the bandwidth required to create 

seven new replicas every three days or ten new replicas every ten days is prohibitive for 

most nodes.

Figure 4.3 shows the continuous outbound bandwidth required for various combina

tions of replication factors and days to create those replicas. Assume that a cheating node 

has 2,000,000 objects and 32GB of state. For a node with five replicas, it will need to 

create approximately five replacement replicas within three days to avoid losing an object. 

To create five new replicas within three days a node must ship 160GB of data, inducing 

continuous outbound bandwidth traffic of approximately 5Mb/s. If the node tries to main

tain six replicas, the bandwidth requirement is about 6 Mb/s. Even a node with ten replicas,
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This figure shows the continuous outbound bandwidth required to create five, six, seven, 
or ten replicas every three or ten days. Nodes are assumed to have 32GB of state and a 
normative replication factor of five.

Figure 4.3: Required bandwidth to create replicas.

who is unlikely to ever lose any objects after missing three consecutive queries, needs over 

2Mb/s to recreate ten replicas over ten days.

Bandwidth between arbitrary points on the Internet is unlikely to approach these levels 

anytime soon [70]. Current cable modem upload bandwidth in Ann Arbor was 384 Kbps 

as of August 2005. Furthermore, as we will see in Section 4.5.2 continuously paying 

network bandwidth more expensive than the storage an attacker is trying to save. Paying 

for remote storage with bandwidth instead of storage is simply not cost effective.

However, while bandwidth constraints will likely keep nodes with data sets of 32GB 

or larger from cheating, this might not be enough to prevent nodes with only a few objects 

from cheating. The less data a node needs to replicate, the less bandwidth it needs to create 

new replicas every three or ten days. While this is true, nodes with smaller data sets are, 

by definition, unlikely to consume large amounts of storage.

Nonetheless, if nodes with smaller data sets become a problem, we could further refine 

Pi. One possibility is to identify which nodes are capable of cheating. By using the amount 

of storage consumed and the rate at which it was copied, nodes could approximate the 

maximum number of replicas a node is capable of creating before it expects to lose an 

object. The discard rate could be set higher for nodes with more bandwidth and lower for 

nodes with less.

Finally, after the owner of the failed disk recovers, what should happen to its data? 

Currently, we assume that eventually an unresponsive node’s backup state will be dis

carded, hopefully after it recovers. However, if a node truly fails, it could send its replicas
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a post-recovery message saying that it would like to store its buddies’ data again. While 

they would be under no obligation to do so, buddies could then resend their lost data if 

they believe that it was the result of failure and not malice. This would save the recovered 

node and its buddies bandwidth or the effort of trying to find brand new replica sites.

4.4 Exchange Model and Analysis

Section 4.3 introduced the grace period attack and probabilistic discard as a way to 

reduce cheaters’ quality of service. There is an alternative, natural “defense” against the 

grace period attack that relies on the relative costs of storage and network bandwidth. It 

may be more expensive for a node to frequently spend large amounts of network band

width, than to simply store what it is supposed to. To explore this further, we modeled a 

BEE network as an economic game.

One simplification of our model is the use of a static grace period, rather than proba

bilistic discard. This allows us to keep all of our model constraints linear, but also isolates 

the effect of relative resource costs on behavior. In future versions of the model, we hope 

to examine the effect of probabilistic discard.

To further simplify the analysis, we assume that all but one node obeys the exchange 

protocol. The well-behaved nodes give up storage equal to what they consume and main

tain that storage faithfully from that point forward. The other node, denoted c, acts in 

accordance with the solution to an optimization problem.

Our goal is to establish when the rational node’s optimal strategy is to contribute and 

when it is to cheat. This will depend on several model parameters, including the relative 

cost of resources (storage and network bandwidth), bandwidth capacity, desired level of 

service, and grace period length.

The optimizing node attempts to minimize the cost of achieving a desired level of ser

vice. We only considered the costs of upstream bandwidth, downstream bandwidth, and 

disk space. There are other costs that we ignored such as lost CPU cycles, the added se

curity risks of being on the Internet, or the extra power consumed by running Pastiche. 

However, this is reasonable since CPUs are vastly under-utilized for most users and Pas

tiche does not require machines to be continuously running and on-line.
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In our model, a Pastiche network is populated by a single rational user, c, and a set, H, 

of n  well-behaved storage hosts, denoted H  =  {hi, h2, . . . ,  hn}. Each /it owns a single 

block of excess storage, denoted 6 1 , b2, . . . ,  bn. hi controls access to block b{. c owns a set 

of n  blocks of excess storage, denoted d \ ,d 2, . . . ,  dn. Only hi can gain access to dj.

c has only one block of data to backup. It can acquire storage on other hosts through 

exchanges with ht. An exchange e is a member of H  x [1 , T]4, where T  is the number 

of rounds in the game. Each exchange e can be written [hi, a c, u c, a {, Ui\. The function 

E  : H  x [1, T ] 4 —> {0,1} determines which exchanges occur. E([h{, a c, u>c, a i} a;*]) =  1 if 

and only if c grants hi access to di in round a c and revokes it in round uic. In return, c gains 

access to bi in round and loses access in round u t. For example, if E([hi, 1 ,5,1,1]) =  1 

then c has access to block 6 1  during rounds 1, 2, 3, and 4 and hi never has access to block 

d\. This is equivalent to c getting something from h x for nothing for rounds 1, 2, 3, and 4.

We modeled BEE as constraints on the mappings of E.  These constraints determine 

which exchanges are illegal. If e is illegal, then E(e) — 0. A strategy is a set of legal 

exchanges where E(e) = 1 for each e in the strategy. To evaluate BEE, we can solve an 

optimization problem over our constraints to derive an optimal strategy.

4.4.1 Problem Constraints

Our first group of constraints enforce the ordering of events in exchanges. First, access 

to di and bi must be granted simultaneously. Second, access to a block cannot be revoked 

before it is given. Thus, for e =  [hu a c, u c, a if o»i]

ac ^  a{ —t * =  0

u c < a c => E{t) — 0

Ui < ai => E(e) — 0

Our next constraint uses the parameter G, the length of the grace period. G determines 

for how many rounds c may access bi after c has revoked access to di. This constraint 

stipulates that hi will not grant access to bi G  rounds after it loses access to di. Thus, for

6  =  [hi, OLc, Uc, Oii, Ct?j]

(u>i — u>c) > G => E(e) = 0
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We must also limit the number of exchanges c can make per round, which we control 

using the parameter B. B  denotes the bandwidth capacity per round of c. c cannot make 

more than B  exchanges per round. Thus, for all hi, u c, u^:
X

^T f E ([h i,r ,uc, r , u i]) < B
r = 1

We need another set of constraints to capture the level of service that c wants to achieve. 

The parameter R  represents c’s desired replication factor. At the very least, c would like 

to have access to R  blocks by the end of the game (round T). However, setting a specific 

round by which c should have R  replicas is unrealistic. It would be equivalent to c’s 

knowing when its disk will fail. More realistically, c would want to maintain R  replicas 

for a period of P  rounds. Thus, for all a c, u c, a it and t £ [T — P,T]
n

E(Jhj, Oic, ujc, cx-i, f]) >  R
j=i

4.4.2 Problem Objective

With these constraints, we can cast our problem as a minimization optimization. Our 

goal is to find a strategy with minimal cost. Exchanges cost upload and download band-' 

width and potentially disk storage. The relative costs of these resources are set by the 

parameters U (upload bandwidth), D  (download bandwidth), and S  (storage space).

Anytime c ships its data to another host it will incur a cost of both D  and U. It is 

obvious why c would incur an upload coast, but it is reasonable to assume that it will also 

incur a download cost. Most nodes will not have the resources to prevent blocks sent by 

another host from reaching its network interface. Nodes can still choose to not store data, 

but before it can be discarded, it must be downloaded. We are most interested in when c 

will store data for others, c will incur a cost of S  for each round that it stores data for hi. 

We modeled S, U, and D  as constant values.

Lastly, for exchange e we represent c’s decision to not store data for hi as a c = uic. 

This leads to the following cost function for c:

cost =  E (E(e)(uc - a c)S) + (U + D)
e e

Our objective is to minimize cost.
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4.4.3 Model Equilibria and Analysis

The ratio of the cost of storage (S ) to the cost of upload and download bandwidth 

(U + D ) and the ratio of the length of the grace period (G) to the maintenance period (P) 

affect c’s incentives more than any other parameters. For the moment, assume that c only 

needs one replica (R  =  1) and that I  is the round by when the replica must be created. 

Later, we will examine strategies for arbitrary values of R.

Case: One Replica

The simplest case is when the cost of storing data for a grace period is greater than 

the cost of creating a new replica. Then c should never store data for others, leading c’s 

strategy consisting of [ g j  exchanges, {e0, e i , . . . ,  e ^ g j_ 1} where

£j =  [hi, I  +  Gi, I  +  G i, I  +  Gi, min(7 +  G(i +  1), T  +  1)]

The cost to c of this strategy is |_^J {U + D).

The more interesting case is when U + D > SG. When this is true, it is helpful to 

imagine c spending storage to avoid paying network costs, c can use less expensive storage 

events (rounds when data is stored) to avoid more expensive network events (rounds when 

data is exchanged). Let S  be the number of storage events and A f  be the number of network 

events, such that c’s total cost is S S  +  Af(U + D).

The number of network events, J\f, scheduled by c is determined by its storage events, 

S ,  and the length of the grace period, G. c always incurs an immediate network cost 

of U + D  to create its replica during round I. Our approach will be to fix Af  and find 

the strategy with minimum storage costs, S , for that value of Af. Strategy sjv denotes 

the minimum-cost strategy with A f  network events. Once we find Si, S2 , . . . ,  s„, we can 

compare the costs of each to determine the optimal strategy.

If the grace period is long enough to last the entire maintenance period (1 < P  < G), 

then S  — 0 ,A f = 1, and the final cost is U +  D, which is the least possible cost. This 

strategy contains a single exchange: {[hi, I , I , I , T  +1]}.
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Now say that the G < P  <  2G. c has two competing strategies:

Sl =  {[hu I , T - ( G - l ) , I , T + l ] }

s2 =  {[h\, I, I, I, I  + G],[h\, I  + G, I  + G, I  + G , T  + 1]}

In si, c holds on to data long enough to avoid a second network event so that S  =  P  — 

(■G -  1) and J\f = 1. Any other strategy with only one network event must involve a larger 

5 .

In s2, c pays no storage costs, but pays network costs twice so that <S =  0 and J\f =  2. 

Any other strategy with two network events incurs storage costs.

The optimality of si or s 2 is determined by the relative costs of storage and network

events. We denote this ratio r, such that S  = r(U + D). In terms of r, s 2  is optimal when

( P - G + l ) S  + {U + D) > 2{U + D)

G + l)r(U  + D) + (U + D) > 2 (U + D)

( P - G + l ) r  + l > U + D 
U + D -  1

r >
P - G + l

and si is optimal otherwise.

Next, say that the 2G < P  <  3G. c has three competing strategies:

Sl =  {[h l , I , T - ( G -  1 ) , / , T + 1 ]} 

s2 =  {[h1, I , T - 2 G + l , I , T - ( G - l ) \ ,

[h i,T  — (G — 1 ) ,T  — (G — l ) , T  — (G — 1 ) ,T  +  1]}

S3 =  { [ / i i , + G] ,  [ / i i , /  + G , /  + G , /  + G , /  + 2G],

[h\, I  + 2G, I  +  2G, I  + 2G, T  +  1 ]}

For si, S  = P  — (G — 1) and M  =  1, as before. Any other strategy for which M  = 1 

requires spending more storage. In s2, S  — P  — (G — 1) — G and M  =  2. Here c stores 

data long enough to only need two network events. It schedules a cheat toward the end 

of the game to avoid late storage costs. The other exchange involves holding onto data 

just long enough to gain G rounds of free-loading. Any other strategy for which M  =  2
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2G < P  < 3G 3G < P  < AG
Strategy 5 Af S Af

Sl P - ( G -  1) 1 P - ( G -  1) 1
s2 P -  [G - l ) - G 2 ‘t) l 1 I—1

 1 2
s3 0 3 P -  ( G -  1) - 2 G 3
S4 NA NA 0 4

Table 4.1: Summary of S  and A f  for 2G < P  < 3G and 3G < P  < AG.

requires spending more storage. In s3, c pays no storage costs, so S  =  0 and A f  =  3. Any 

other strategy involving three network events must have non-zero storage cost.

If we apply similar reasoning to a network in which 3G < P  < AG, we arrive at

Sl =  {[hu I , T - ( G -  1 ) , / , T  +  1]} 

s 2 =  {[hi, I , T  — 2G + 1 ,1 ,T  — (G — 1)],

[hu T - ( G - l ) , T - ( G - l ) , T - ( G - l ) , T + l ] }  

s 3 =  {[hi, I  , T  — 3G + 1 , T  — 2G + 1],

[h,  T  -  2G +  1, T  -  2G + 1, T  -  2G +  1, T  -  (G -  1)], 

[hu T - ( G - l ) , T - ( G - l ) , T - ( G - l ) , T + l ] }

S4  =  {[hi, / , / , / , /  +  (?], [h\, I +  G + 1 , 1 + G + 1,1 +  G + 1,1 + 2 G +  1 ],

[hi, I  +  2G -T 2, 1 +  2G -f- 2, 1 A- 2G -I- 2, /  +  3G +  2],

[hi, I  +  3G +  3, 1 +  3G +  3, 1 +  3G -I- 3, T  -T 1]}

Table 4.1 summarizes <S and Af  for strategies when 2G < P  < 3G and 3G < P  < AG.

A  pattern is apparent. When iG < P  < {i + 1)G and 1 <  j  < i +  1  for strategy sj,

S  =  P  — (G — 1) — (j — 1)G and Af  = j .  For strategy si+i, 5  =  0  and Af  = i + 1.

This pattern holds for arbitrary i. To see why, consider how each strategy has been 

constructed. For strategies where S  > 0, we worked backwards from round T.  The final 

exchange is a cheat to ensure that the last G — 1 rounds do not incur any storage costs. 

This is why G — 1 rounds are always subtracted from P  (the length of the maintenance 

period).

Before this final exchange, each strategy schedules as many rounds of free-loading as 

possible. Each of these exchanges is for a grace period G.  The more exchanges a strategy
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Figure 4.4: Optimal values of S  and Af for P  — 200 and G =  10.

is allowed, the more of these can be scheduled. Hence, the subtraction of (j — l )G from 

P.  Only the first actually incurs any storage overhead and it is as short as possible.

Deciding which strategy is optimal requires the values of P, G, and r. Our original

goal was to find the conditions when c would contribute storage. This is captured by the

variable S.  In particular, we would like to know when S  approaches P.

Figure 4.4 shows values for <S and Af for optimal strategy s/j  under various values of 

r  =  in games where P = 200 and G = 10. The optimal strategy is to never store data 

until r  <  i  After that, obeying BEE is optimal with S  approaching P.  Thus, for r  < T 

in each of these games, c’s optimal strategy is si. This is intuitive since larger values of of 

r indicate a larger relative cost of storage, which will make paying no storage costs (i.e. 

cheating) more attractive.

Case: Arbitrary Replicas

We will try to understand strategies under arbitrary values of R.  Let A denote the 

round when replica r* must be created. This is a generalization of starting round I  from 

when R  =  1. We want each R to be as late as possible to avoid unnecessary costs.

We can compute c’s strategy by decomposing it into a set of individual replica strate

gies, s i , s 2, . . .  , s r . For each replica r* with strategy su its first exchange must occur in 

round R — T  — P  — J . This ensures that as many replicas are initiated as close to round 

T  — P  as possible. It also ensures that all have been initiated by round T  — P.
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Figure 4.5: Schedule of strategies for R  — 5, G =  3, B  — 2, and M  =  1.

Our constraints require c to maintain R  replicas from round T  — P  to round T.  The 

values of R  and B  affect when network events can be scheduled. If B  > R,  network 

events for different replicas will not interfere with each other. In this case, our analysis for 

R  =  1 is still applicable since each st can be computed independently.

When B  < R,  scheduling strategies can be difficult. Computing each s* as we did 

when R  = 1 may result in conflicts. For example, to minimize storage costs, each Sj may 

include the exchange [hj , I , T  — (G — 1), T  — (G — 1), T  +  1]. Unfortunately, because 

B  < R,  only B  strategies can include this exchange. Other replicas must be maintained 

some other way. Ideally, H  =  1 for all strategies, in which case the staggered start times 

is enough to avoid conflicts. As long as r < i -  this is optimal. Figure 4.5 shows such a 

schedule.

However, there may be Sj for which Af  > 1. In this case, strategies that are optimal 

in isolation may be infeasible in combination with others. Computing a globally optimal 

schedule from a set of locally optimal schedules is difficult. One way to resolve conflicts
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is to inject storage events into strategies to delay conflicting network events, c is forced 

to contribute storage to maintain its replicas. Resolving conflicts this way may not be 

optimal, but may be near optimal when storage events are inexpensive relative to network 

events. Resolving conflicts this way is also attractive since it is similar to our earlier 

analysis of bandwidth constraints in Section 4.3.

4.5 Expected Costs and Behavior

The final question we would like to answer is how would a typical Pastiche user be

have? This depends on the relative cost of its resources. In the rest of this section we 

will see how observed resource costs affect nodes’ strategic behavior as well as the cost of 

running Pastiche.

4.5.1 Strategic Behavior

Strategic behavior largely depends on the ratio of S  to U +  D,  which we denoted r. 

Suppose that a typical user spends $0.64 per GB for storage 1 that will last 290 days [17]. 

This means that access to a GB of data for a day costs $0,002.

Also suppose that a typical Pastiche user pays $60/month for cable modem service 

that provides 4 Mbs downstream and 384 Kbps upstream . 2 This means that our user can 

download data for approximately $0.05 per GB/day and upload data for approximately 

$0.50 per GB/day with a maximum capacity of 42 GB/day downstream and 4 GB/day 

upstream. However, most bandwidth is unused and any excess resources used by Pastiche 

are a sunk cost. Thus, the opportunity cost of using bandwidth is much less expensive.

To characterize typical bandwidth consumption, we can use the observations of a net

work usage study of the University of Washington campus [100]. This study found that the 

average web user downloaded 4 MB/day and that the average Kazaa user downloaded 40 

MB/day and uploaded 400 MB/day. It was surprising to find that the Washington students 

uploaded more data than they downloaded, but it conforms to suspicions that campus net

works essentially act as file sharing servers for the rest of the Internet. Nonetheless, if we

‘As of August, 2005, a 250GB disk costs $160.
2 As of August, 2005, this is what Comcast’s Internet service cost in Ann Arbor.
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assume that this usage is typical of a Pastiche user, then users have 41.9 GB/day of excess 

downstream bandwidth and 3.6 GB/day of excess upstream bandwidth.

If we also assume that a user has 32 GB of state, then the opportunity cost of creat

ing a single replica is approximately $0 . 2 0  per day for upstream bandwidth and zero for 

downstream bandwidth over eight days. This is because 400 MB/day is 10% of the to

tal upstream capacity and interfering with this used capacity would cost 1 0 % of the total 

upstream cost of $ 2  per day.

Since it takes eight days to upload 32 GB, the cost of uploading a single replica would 

be approximately 8  x $0.20 — $1.60. The ratio of S  to U + D  would thus be r =  

(32 x $0.002)/$1.60 =  0.04. As we found in Section 4.4.3, if r  < ^  contributing storage 

is optimal. This means that as long as grace periods are shorter than 25 days, we can 

expect Pastiche nodes to contribute storage.

4.5.2 Monthly Cost of Running Pastiche

One of Pastiche’s primary goals is to provide a low-cost backup service. Using this 

model we can calculate a conservative estimate of a user’s network and storage costs to 

run Pastiche under BEE. As with our model, our estimate ignores resources other than 

storage and network bandwidth.

We will assume that the cost to upload a 4 GB of data costs $0.20, the cost to download 

4GB of data is free, and the cost to dedicate 4GB to Pastiche over the lifetime of the disk 

is 4 x $0.64 =  $2.56. As before, the cost of storage is based paying $160 for a 250GB 

disk.

Suppose that nodes use five buddies at any moment in time. We must also account for 

other hosts failing. If we assume a constant failure rate, then, on average, approximately

two buddies will fail before a node itself fails. This means that over the lifetime of a disk,

nodes will create about seven replicas, on average. This does not affect a node’s storage 

costs, which remain constant, but does affect bandwidth its costs.

Also, we must account for the cost of participating in other users’ recoveries (including 

fire-drills). This depends on the lifetime of the disk and node availability. The longer the 

disk lasts, the more fire-drills a node will have to participate in. If we conservatively
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cost to upload 4GB : cu =  0.20
cost to store 4GB : cs =  2.56
buddies at a time : 6 ins =  5
buddies over time : btot =  7

mean time to failure : m  = 290
time between fire-drills : /  =  60 

node availability : a =  0.70

m  =  j ( . (‘s 4” (‘{tot  4“ Cji

This shows a formula to compute the cost of running Pastiche and realistic parameters. 
The formula computes the cost to store data, the cost to create replicas, and the cost to 
participate in buddies’ fire-drills and restores.

estimate that a disk will last 290 days [17] and that fire-drills are scheduled every 60 days, 

then a node can expect to participate in 5 fire-drills per buddy.

The greater node availability is, the less burden is placed on each available buddy 

during a recovery. If all five buddies are available, then each individual’s burden is one- 

fifth. A study of the Ovemet peer-to-peer file sharing system found that the median node 

availability was approximately 70% [11]. Thus, we will assume that 0.7 x 5 =  3.5 buddies 

will be available for each recovery. These assumptions lead to the function T, for the total 

cost, T(d),  of running Pastiche with d GB of unique backup state, shown in Table 4.2. 

Figure 4.6 plots T(d)  for several state sizes using the parameters in Table 4.2.

Figure 4.6 shows that the cost of running Pastiche is low. Backing up 10GB of unique 

state costs less than one dollar per month for a period of 290 days. While this number is 

low, it also represents a conservative estimate. In particular, we assumed that disks last 

only 290 days before failing. If we assume that disks last two years, users can backup up 

to 24GB for less than a dollar per month. This is because doubling the time to run Pastiche 

cuts the per month cost of running Pastiche in half, since the initial storage investment can 

be amortized over a longer period.

This demonstrates that initial storage investment is by far the largest cost. This is very 

encouraging. The cost of disk storage has been falling exponentially for twenty years and

Table 4.2: Cost formula.
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!■ Fire-drills and Recovery BCreating Buddies □  Storage]

4 6 16 32 64 128

GB of unique state

This figure plots the cost of running Pastiche per month for several backup state sizes for 
the parameters in Table 4.2. Pastiche costs less than one dollar per month for state sizes 
of less than about 10GB.

Figure 4.6: Cost of running Pastiche.

should continue to do so for as least the next five [78]. At the same time, storage hardware 

represents less than ten percent of the overall cost of centralized solutions [78]. Since 

Pastiche has no administrative overhead, it will continue to benefit from falling storage 

costs while centralized services will not.
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CHAPTER 5

STORAGE CLAIMS

Pastiche must ensure that nodes contribute in proportion to their consumption. Under 

bilateral, equal exchange (BEE), node A  provides storage for node B  if and only if B  also 

provides storage for A. B  can periodically check its data to see if it is held by A, and vice 

versa. Collectively, these pairwise checks ensure that each node consumes as much as it 

contributes.

BEE requires what economists call a double coincidence o f wants [87]. Nodes can 

only use the storage of those who want an equal amount of theirs. Double coincidences of 

wants may be rare in Pastiche since overlap is asymmetric and users have a wide range of 

storage demands. Because of this, BEE could over-constrain storage allocation.

Consider two nodes with different storage needs. Node A  might want to store 1MB 

on B  and node B  might want to store 1GB on A. One way to solve this problem is for B  

to trade a 1MB subset of its state for /Ts 1MB. Unfortunately, because Pastiche currently 

only replicates data at a file system granularity, such exchanges are not supported 1.

Thus, under the assumption that backup state is replicated monolithically, Pastiche ad

dresses problems of asymmetric demand with storage claims. Storage claims are incom

pressible storage placeholders. They are content-immaterial objects whose sole purpose is 

to enforce equal exchange by occupying space. Claims allow nodes to manufacture equal 

exchange when it does not arise naturally.

Once stored, claims are treated like any other data object under BEE; nodes can query

'As discussed in Section 3.6, while state-splitting is not impossible, it requires additional information to 
be added to Chunkstore meta-data chunks.
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and discard their content just as before. Claims need two properties to act as placeholders. 

First, they must be incompressible. This forces claim recipients to expend the intended 

amount of storage space. Second, claims’ owners must be able to easily recreate them 

from a small amount of state for querying. Otherwise, claims could add to their owners’ 

storage burden.

Returning to our example, A  can pad out its 1MB of actual data with 999MB of claims 

to meet B ’s demand for 1GB. This assumes that A  is willing to give up more of its disk 

than it has data. A 's incentive to agree to this trade depends on the value to A  of creating 

a replica at B  relative to other options. The value of storing 1MB of data and 999MB 

of claims at B  in exchange for 1GB of local storage must be greater than the value of 

any alternative exchanges, possibly including those with lighter storage requirements. Un

derstanding how nodes weigh the benefit of a host’s network proximity and data overlap 

versus the cost of its storage demand is beyond the scope of this document. From now on, 

we will remain agnostic about how preferred hosts are chosen and will simply assume that 

they present the best combination of attributes.

Extreme asymmetry occurs when one host wants to store data on a host with no recip

rocal interest. In the worst case, storage interest is never mutual. Because Pastiche nodes 

want most of their buddies to be collocated, this worst case is unlikely. However, finding 

far away buddies may resemble this worst case.

When there is nothing to gain from storing data at another host, there is no incentive to 

negotiate an exchange. For example, if node B  wants to store 1GB on node A, but A  does 

not want to store any data on B, what incentive does A  have to send B  storage claims? 

Sending claims to B  would cost A  bandwidth and maintenance overhead for little or no 

value in return. If Pastiche cannot give nodes value in return for shipping storage claims, 

only nodes with mutual interest will trade storage. This prevents most nodes from storing 

at their preferred sites and over-constrains storage allocation.

Alternatively, a node could accept storage requests from arbitrary hosts and ship its 

backup state instead of claims. This may be an attractive option when willing buddies are 

difficult to find as a way to create temporary replicas. Unfortunately, if a node cannot find 

any willing buddies, it will be left using unsatisfactory storage.
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(a) A simple data storage network

(b) One claim per stored block

^  A J ^  B J J

© 0 0

(c) With claim forwarding

This figure illustrates a simple data storage network. The top panel shows only the blocks 
stored by each node. Node B  stores block ai for node A, and C  stores b\ for B. The 
middle panel shows the network with the addition of storage claims. Node B  must store 
claim 7 1  for node C, and A must store Pi for B. In the bottom panel, node B  forwards 
claim 7 j, rather than generating its own. This reduces storage overhead, but creates a 
dependency chain; B ’s data now depends on the faithfulness of A.

Figure 5.1: Storage claims
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Ideally, a node could identify its preferred replica sites and use that storage. To do this, 

nodes can overwrite claims they own with claims they receive. This is called forwarding. 

Forwarding allows nodes to treat claims as a store o f value. Claims are a kind of credit 

for contributing storage that can be cashed in during later exchanges. The ability to hold 

credit gives claims value to their owner and creates an incentive to own them.

Forwarding requires creating data dependencies. For example, in Figure 5.1(c), for

warding creates the dependency chain C  —> B  —> A. This has implications for data 

reliability, because nodes who forward claims are still responsible for them. When a down

stream node fails, upstream nodes are punished. However, if a claim is forwarded back to 

its creator, it forms a dependency cycle. Cycles tolerate single failures without cascading 

loss.

The rest of this chapter is organized as follows. Section 5.1 describes how and when 

claims are constructed. To create a claim, a node only needs a secret key K  and the on-disk 

location of the object it was traded for.

Section 5.2 describes the forwarding protocol and how it enables flexible storage allo

cation. Forwarding takes advantage of two abstractions. The first is storage rights, which 

allow data to be overwritten. The second is claims’ content-immateriality, which allows 

them to be over-written without consequence.

Section 5.3 discusses the data dependencies created by forwarding and how they can 

threaten overall reliability. The longer a dependency chain becomes, the more likely that 

much of the data along the chain will be discarded. However, if a claim is forwarded back 

to its original owner to form a cycle, nearly all data can be preserved in the event of a 

failure.

Finally, Section 5.4 evaluates our prototype for managing claims and shows the results 

of simulations of forwarding under various failure and storage utilizations settings. We 

found that the overhead incurred by our prototype is low and that forwarding only leads to 

data loss during large-scale, correlated failures.
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5.1 Claim Construction

Storage claims transform each storage request into an equal exchange. To preserve 

these terms, nodes that are given claims must only be able to produce them if they are 

physically stored. Claim owners, however, must not be forced to store local copies of 

claims in order to verify that they are being honored. This would double the storage 

burden of the owner.

Before a node joins the system, it must initialize its storage space by logically filling 

it with storage claims. Later, when data is placed in the storage space, the node can return 

any claims that were “overwritten.”

Computing a claim requires two values— a private, symmetric key K ,  and a location 

in the storage space. To initialize the space, nodes first logically fill the storage space with 

hash values. In the first 20 bytes, nodes compute the SHA-1 hash of the concatenation of 

the symmetric key K  and the number 0, denoted h0 =  S H A  — 1(P, 0). For each 20 byte 

chunk that follows, the hash hi = S H A  — 1 (P, i) is stored in the ith chunk.

Claims are fixed-sized blocks formed from consecutive hash values. For example, 

suppose that claims are 512 bytes long. The initial claim, denoted Co, is computed by 

concatenating the first 25 hashes with the first 12 bytes of the 26th hash, and then encrypt

ing it using the symmetric key K .  The second claim, C\, is computed by encrypting the 

concatenation of the next 25 hashes and the first 12 bytes of the hash after those, and so 

forth. Thus, the zthe claim, Ci, i s :

Cj =  {hj,  hj+i, . . . , /ij+24) ^j+25[0], • • • , hj+2b[ll]}K 

where j  = i x 26.

Claims do not have to be computed during initialization, and never need be stored on 

the originating host. They can be computed on the fly as needed using K  and the associated 

storage location.
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5.2 Forwarding Claims

When node A  stores data for node B  and B  stores claims for A, we say that B  is 

downstream of A; claims always move downstream. Trades between A  and B  represent 

an exchange of storage rights. Each node is entitled to store anything it chooses on the 

remote disk blocks of the other. A  can replace its object with anything and B  can replace 

its claims with anything. Replacement does not affect equal exchange since all nodes still 

consume and contribute equally.

To authenticate replacement, the two nodes negotiate a Diffie-Hellman key [38] during 

the initial trade. This is unauthenticated because we do not assume that nodes have certi

fied identities. It is therefore subject to man-in-the-middle attacks. However, if the initial 

exchange is not intercepted, future replacement requests can be checked for authenticity. 

Pastiche decreases the likelihood of interception by routing negotiation messages via IP 

rather than the overlay.

Unfortunately, claims ownership is not valuable enough to encourage trade between 

arbitrary nodes. Claim content itself has no inherent value. They are content-immaterial 

because they do not help during recovery. Claims are only useful insofar as they verify 

that their owner’s storage rights are being respected.

Because of this, there is no incentive for a node to spend valuable local storage or 

bandwidth to ship data that cannot help it recover. Worse, creating claims may actually 

weaken the nodes ability to recover from disk failure. Consider a node whose disk is one- 

sixth full and who wants five backup buddies. Accepting data requests in return for claims 

limits the node’s ability to swap data with its buddies. Given these trade-offs, nodes should 

only store claims from their buddies. This limits allocation to transactions between hosts 

with mutual interest.

To enable more flexible allocation, Pastiche must compensate nodes for the disincen

tive to ship claims to hosts they have no interest in. It does this by allowing nodes to 

overwrite claims they own with claims they are responsible for. Moving claims further 

downstream this way is called forwarding.

Forwarding makes claims useful to their owner. With forwarding nodes can treat
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(a) A simple data storage network

(b) Forwarded claim

(c) Claim cycle

This figure illustrates how a claim is forwarded in a simple three node storage network. 
Arrows represent query lines. Objects are boxes and claims have rounded comers. Node 
C is storing object b\ for node B. B  is storing claim 7 1  for C in return. B  is also storing 
object ai for node A, who is in turn storing claim 0i for B. Because B  wants to free up 
space so that it can create a second replica of b\, it replaces fix on A with 7 1  and forwards 
any queries or storage requests for 7 1  from C to A. Say that C wants to create a replica 
of object ci on A. This allows A to replace whatever new claim it would have returned 
to C  with claim 7 1 , which removes 7 1 .

Figure 5.2: Forwarding claims.

claims as a store o f  value. This is similar to how fiat money operates. Nodes will be 

willing to accept data requests in exchange for claims if the storage occupied by claims 

can be leveraged in later transactions. Used this way, claims function as a kind of currency, 

freeing storage allocation and eliminating the need for direct, mutual interest.

Forwarding has the additional advantage of clearing the storage overhead of claims. 

When one claim is overwritten with another, their is one less claim occupying space in 

the storage pool. This overhead can be significant. In the simple case where nodes never 

replace the claims they create, the storage overhead of Pastiche is equal to the data stored 

in the storage system, doubling global storage requirements.
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Consider the network shown in Figure 5.2(a). Node A  stores its object a\ on node B, 

which in turn stores claim j3\ on A. B  also stores object b\ on node C, which in turn stores 

claim 7 ! on B. B  only has space for two blocks—both of which are currently occupied— 

but wants to create a second replica of b\ . Creating a second replica is possible only if B  

has enough space to store another node’s claims. Thus, B  needs to free a block of storage.

B  can free a block by using the storage rights it received for storing a\, so B  replaces 

Pi with 7 1 . B  no longer needs to query for Pi. Whenever C  queries B  for 7 ^  B  will 

simply forward the query to A. This network is shown in Figure 5.2(b).

Allowing nodes to forward claims does not enable the Sybil attack [41]. Suppose a 

dishonest node creates an alias for itself. When it receives a claim, it can “forward” the 

claim to its alias, but the node gains no advantage. It must still produce the claim when 

asked, and must therefore still store it.

B  was able to eliminate one claim, but another claim, 7 1 , still exists. Now say that C  

wants to create a replica of its object c\ on A. A  first stores < 7  for C  and returns claim 7 ! 

to C, rather than creating a new claim. When 7 1  is forwarded back to its owner, C, a cycle 

is created, and 7 1  can be removed. This network is shown in Figure 5.2(c).

Even when a cycle is created, each node’s storage rights remain intact. C  still has the 

right to a block on B, B  still has the right to a block on A  and A  has the right to a block on 

C. In a cycle, every node can forward a replacement request to a downstream node until 

the request comes back to the node that originally made it.

The cycle example, as presented, uses the simple optimization of telling nodes where 

their claims are physically stored. Without the optimization, C  would initially receive a 

brand new claim, a 2, from A. C  would then use its storage rights on B  to forward a 2. B  

would in turn forward a 2 to A, who does not need to store the claim because it can compute 

it. The result is the same—all claims are removed. When C  knows that A  is storing 7 j , all 

of this forwarding can be eliminated. C  can simply tell A  to return 7 1  instead of creating 

new claim a 2. This optimization has the additional benefit of eliminating query forwarding 

since nodes can query claim storers directly.
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(a) before failure

(b) after failure

This figure illustrates a five-node dependency chain of claims, both before and after the 
middle node fails. Arrows represent query lines. Objects are boxes and claims have 
rounded comers. Upstream nodes lose all data, while downstream nodes retain it.

Figure 5.3: Failure in dependency chains.

5.3 Forwarding and Reliability

When a node forwards a claim downstream, it remains responsible for it. Without au

thenticated identities, nodes cannot prove to the claim owner that the claim was forwarded. 

To see why, consider a dishonest node that can create aliases for itself. Every claim re

ceived by this dishonest node could be “forwarded” to one of its fictitious identities. If 

other nodes believed these assertions, the dishonest node would never be held accountable 

for discarding the claims it should have been storing.

Pastiche assumes that nodes respect the storage rights they have promised other nodes 

when their own data depends on it. In the case where claims are never forwarded, the rules 

of BEE apply. Whichever node’s query failed must be storing data owned by the failed 

node. The querying node simply discards the failed node’s data.

When claims are forwarded, however, the node that detects the failure might not be 

storing any data owned by the failed node. Consider the five node dependency chain 

in Figure 5.3(a). In this network, a dependency chain exists via claim ei. Node A  is 

downstream of node B , B  is downstream of node C, C  is downstream of node D, and D 

is downstream of node E.

Suppose that C  fails B ’s query. B  is not storing ci, so it cannot discard C 's data.
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(a) before failure

(b) after failure

This figure illustrates a five-node dependency cycle of claims, both before and after the 
middle node fails. Arrows represent query lines. Objects are boxes and claims have 
rounded comers. Upstream and downstream nodes retain all data.

Figure 5.4: Failure in dependency cycles.

However, B  still has storage rights on A, so it uses those rights to replace e\ with its own 

claim, (3\. A  must replace with to protect its object, a\.

Meanwhile, E  holds D  responsible for ei. When E  queries D  for e\, the query fails. 

E  then discards D's object, d\. In response, D  attempts to use its storage rights at C  to 

replace with a claim of its own. When this request fails, D discards C ’s object, c\. The 

resulting network is shown in Figure 5.3(b). All data upstream of the failure is lost, but 

downstream data is preserved.

In our example, even though D  did not fail, it lost d\ as a result of C ’s failure. Forward

ing a claim makes the data traded for that claim only as reliable as the weakest downstream 

node. The longer the dependency chain, the less reliable each upstream node’s data be

comes.

This weakens claims’ function as a store of value, since they are valuable in proportion 

to their reliability. The further a claim is forwarded the less valuable it becomes. Nodes 

could agree to limit chain lengths, although this is not enforceable. Capping chain lengths 

also means that the node at the end of a chain will lose some incentive to create claims of 

its own. Even though dependency chains weaken reliability, as we show in Section 5.4.4, 

object loss is still rare, unless both the permanent failure rate and storage utilizations are 

very high.
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Surprisingly, while dependency chains weaken reliability, cycles actually restore it. 

This is because each node in a cycle has storage rights on another node in the cycle. In a 

dependency chain, the node farthest downstream does not have any storage rights. When 

the farthest node does have storage rights, data can “wrap around” any failure. Consider 

the five node dependency cycle in Figure 5.4(a). In this network, a cycle exists where node 

A  is downstream of node B, B  is downstream of node C, C  is downstream of node D, D  

is downstream of node E, and E  is downstream of A. Suppose, as before, that C  fails B ’s 

query. B  again uses its storage rights to store claim Pi on A.

Before, A  replaced with (3\. Now, however, A  has storage rights on E , because A  

is storing E 's  object e\. A  can use those rights to forward P\ to E. E  has storage rights 

on D  and thus forwards Pi to D. D  has storage rights on C  and attempts to store Pi on C. 

This fails, so D  discards C ’s object, c\. However, because D  wants to protect its object, 

d\, on E , it stores Pi. The resulting network is shown in Figure 5.4(b). This time all data 

upstream and downstream of the failure remains intact.

This puts Pastiche in a strange predicament. Forwarding weakens data reliability as 

long as the claim remains active in the system, but if the claim can be retired to create a 

cycle, reliability is restored. It is thus in nodes’ interest to create cycles, but not chains. 

We will return to this issue in Chapter 6 .

5.4 Evaluation

We have built a prototype claims management application in C, called s a m s a ra d . 

The name s a m s a r a d  is a remnant of the original name of this research, Samsara [35] 2  

The daemon is composed of three layers—a messaging layer, a replica manager, and a 

storage layer.

The messaging layer is responsible for sending and receiving all network and local 

messages. Local messages are passed via Unix domain sockets. This is how Pastiche 

communicates with the claims management software. There are four messages that can be 

sent to s a m s a ra d — s t o r e ,  r e t r i e v e ,  q u e ry ,  and c a l l b a c k .  The arguments and

2Samsara is the name of the cycle of good and bad karmas in Hinduism.
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Message Arguments Return Value
s t o r e

r e t r i e v e
q u e r y

c a l l b a c k

pathname, objectid, location, sync 
objectid, location, sync  

location 
pathname, event

error
pathname

error
id

(a) sam sarad messages.

Event Description
s t o r e _ r e q

r e t r i e v e _ r e q
q u e r y _ r e s

a remote node requests storage 
a remote node requests data 

a query succeeds or fails

(b) Callback events.

This table shows the messages that can be passed to the sa m sa r a d  daemon by higher 
level peer-to-peer storage systems, like Pastiche. Each message is passed to sa m sa r a d  
via Unix domain sockets. The c a l l b a c k  message allows other processes to register a 
socket to be notified when an event occurs. The events that can be registered for are listed 
and described in the bottom table.

Table 5.1: sam sarad interface.

return values for these messages are summarized in Figure 5.1. All network communica

tion uses the RPC2 package [102].

Once the messaging layer receives a message, it forwards the request to the replica 

manager. The replica manager is responsible for authentication and maintaining replica 

locations. We used the o p e n s s lO  . 9 . 7  library for all authentication including a 2048- 

bit Diffie-Heilman key exchange with SHA-1 hashes.

The storage layer is responsible for knowing who owns any stored data and where that 

data lies; it also handles claims generation, using a claim size of 4096 bytes.

Claims, like chunks, are stored in the underlying e x t2  file system. Claims are com

puted from a user-defined password and the i-node number of the chunk it was traded 

for. Chunk locations are stored in a database that maps object identifiers to a e x t 2 path. 

Additionally, all stores are whole-object grained.

In evaluating claims forwarding, we set out to answer the following questions:

• What are the data transfer and query performance of the prototype?

• How much processor and disk overhead does querying induce?

• How does storage utilization affect the need to forward?
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(b) Time to complete archive benchmark.

This figure shows the time to transfer both the tree and archive loads for s a m sa r a d  and
the copying utility s c p . Our prototype requires three phases to complete the transfer—
storing the data at a replica site, receiving claims in return, and then storing those claims.

Figure 5.5: Data transfer performance.

• How often do dependency cycles arise naturally?

• How long do dependency chains get as utilization increases?

• How do dependency chains affect reliability?

5.4.1 Prototype Micro-benchmarks

We were interested in measuring two aspects of our prototype, s a m s a ra d . We wanted 

to know what its data transfer and querying performance were and we wanted to charac

terize the load of responding to and verifying queries. To explore both questions, we 

used two representative data loads. The first load, referred to as the “tree” load, consisted 

of 1676 files totaling 13MB. The other load, referred to as the “archive” load, consisted 

of a single 13MB file. We chose these two loads to examine the effect of transferring 

and querying many objects versus just one. The data used for both was taken from the 

o p e n s s l - 0  . 9 . 7 a  source tree. The tree load was all regular files in this source tree,

samsarad scp

□ Storedata □  Fetchclaims ■  Storeclaims
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This figure shows the time to compute and verify a query under both the tree and archive 
loads. Times to compute and verify queries for both the data and the claims exchanged 
are shown.

Figure 5.6: Query performance.

while the archive load was all regular files concatenated into a single file.

All experiments were run on machines with a 550 MHz Pentium III Xeon processor, 

256MB of memory, and a 10k RPM SCSI Ultra wide disk. The disk has an average 4.7 

ms seek time, 3.0 ms rotational latency, and 41 MB/s peak throughput. Test-bed machines 

are connected by a switched, lOOMb/s Ethernet fabric.

We first measured data transfer performance. How does s a m s a ra d  perform rela

tive to the commonly-used secure copy utility s c p ?  In this experiment, s a m s a r a d  first 

copied data to a replica site. It then retrieved and stored the claims exchanged for that data. 

We ran ten trials per experiment with both s a m s a ra d  and s c p , being careful to flush the 

system’s buffer cache between trials. The performance results are in Figure 5.5.

s a m s a ra d  outperformed s c p  for both loads during the store data phase, with s c p  

performing much worse under the tree load. Storing claims, however, is quite slow, taking 

nearly 10 seconds to complete. The reason for this is that s a m s a r a d  needs to store 

each claim, and then update the claim’s entry in the storage location database. While 

slow, this performance is still reasonable since most peer-to-peer storage systems ship 

data asynchronously.

We evaluated query performance and overhead next. We queried the data and claims 

associated with the tree and archive loads. This involves two phases—the query response 

computation and verification. The results are shown in Figure 5.6. These measurements 

were taken after the data had been copied and the buffer caches at both machines had been 

flushed.
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(b) Disk operations during querying.

This figure shows processor and disk load during query computation and verification.

Figure 5.7: Query processor and disk load.

For both data queries, the time to compute the response was the same as the time to 

verify it. This is because both the querying and storing node performed the same tasks. 

Each needed to read the data from disk to compute the response. It took much more time to 

compute and verify the tree data, because it required more disk reads. For claims queries, 

the time to compute a response took much longer than the time to verify. This is because 

verifying a claims query is done entirely in memory, which is much faster than reading 

from disk.

The processor and disk loads of computing and verifying queries are shown in Fig

ure 5.7. The processor and disk loads of the querying and responding nodes are the same 

for data, but the overhead of responding to a claims query is very different from verifying 

it. The responding node uses many more disk operations to read the claims from disk, 

while the querying node requires more processor time to recompute the claims.
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5.4.2 Space Overhead

In the worst case, when nodes never forward claims, Pastiche doubles the global stor

age burden. As we saw in Section 4.5.2 this would have a significant impact on the cost 

of running Pastiche, nearly doubling the monthly cost of participation. Furthermore, this 

could be problematic when storage utilization is high. To explore how effectively Pastiche 

can reduce its overhead under high utilization, we built a Pastiche simulator on top of Sim- 

Pastry. We populated our simulator with 5,000 nodes, and set the replication factor to four. 

Each node was assumed to have one object that was equal in size to a claim.

We were also interested in the relationship between replication strategy and overhead. 

Objects can be replicated as individual objects in a distributed hash table (DHT), or can be 

replicated as collections on nearby nodes. The former strategy is employed by CFS [36] 

and PAST [98], while latter strategy is similar to that used by Pastiche. For both replication 

strategies, we varied system-wide space utilization from 50% to 100%. In each experiment 

objects were forwarded to other nearby nodes, as determined by replication strategy, if 

their “natural” replication sites were full. Each experiment continued until all objects 

were placed or storage was exhausted.

The results are in Table 5.2. Nodes were almost always able to replicate their objects, 

even at 100% storage utilization. In the 100% utilization case, both collection-based and 

DHT replication reduced claim overhead to less than 0.02% of global storage.

Even though collection-based and DHT replication pursue very different strategies, 

claim overhead can be effectively reduced in both. The biggest difference between collection- 

based and DHT replication is that collection-based generated more cycles than DHT. The 

reason for this is that collection-based nodes are more likely to choose one another. The 

collection-based strategy targets replica sites that are close in the network, which is gen

erally symmetric. This leads to clustering of nodes that are close to each other, and makes 

cycles more likely. In DHT replication, nodes replicate along a random range of the nodeld 

space. The randomness makes it highly unlikely that nodes within a range of the nodeld 

space will choose to replicate their own objects on reciprocal peers.

Still, for both replication strategies, we observed very few cycles. Because chains
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Collection-based replication
50% 57% 67% 80% 1 0 0 %

replicas 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 19997
claims 13626 11488 8619 4740 3
cycles 8 6 129 173 180 152

forwards 6326 8528 11942 18913 131360
DHT replication

50% 57% 67% 80% 1 0 0 %
replicas 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 19998

claims 15207 12753 9168 9168 2

cycles 5 7 4 6 37
forwards 4788 7269 11332 18050 119833

This table shows the storage overhead in two simulated Pastiche networks of 5000 nodes, 
each needing four replicas. Each column represents the percent of global storage needed 
to store all replicas.

Table 5.2: Simulated space overhead.

Collection-based replication
80% 50% 100%

total claims 
% with length <4 
% with length < 8

14971 10671 9098 
1 . 8 8  . 6 8  

1 .97 .79
DHT replication

80% 50% 100%
total claims 

% with length <4 
% with length < 8

16529 11126 9775 
1 .81 .62 
1 .98 .80

Table 5.3: Chain length distributions.

rarely become cycles, forwarding claims will almost always weaken data reliability.

5.4.3 Chain Length Analysis

Pastiche can remove enough claims through forwarding to ensure that all nodes are 

able to create replicas, no matter the storage availability, but how long do chains become? 

Furthermore, at what length do they threaten hosts’ ability to restore their files? Figure 5.8 

shows the distribution of chain lengths under both collection-based and DHT replication. 

These results are summarized in tabular form in Table 5.3.

Chain lengths grow beyond eight only when approaching 100% utilization. In the
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(a) Distribution of chain lengths for collection-based replication.
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(b) Distribution of chain lengths for DHT replication.

This figure shows the distribution of chain lengths for networks using collection-based 
and DHT replication. Each series represents a percent storage utilization required to 
create all replicas.

100% utilization case, 69% of chain lengths are less than four and 79% are less than eight. 

Interestingly, chains can become extremely long when utilization requirements are 100%. 

In one experiment, for example, we witnessed a chain that was 3,822 nodes long out of

5,000.

We must know two things to explain why this happens—how and under what circum

stances chains become longer. When a claim is forwarded, its chain lengthens by the size 

of the chain it replaces. The sum of all chain lengths increases when claims are introduced, 

remains unchanged when claims are forwarded, and declines through cycles.

Few new claims are introduced beyond a certain point, cycles are rare, and storage is 

cleared almost exclusively by forwarding claims. What this means is that the sum of all 

chain lengths among active claims remains relatively constant. Because this sum remains 

stable, the fewer active claims there are, the longer their chains necessarily become. In 

addition, when storage utilization is 1 0 0 %, there are between four and five times more

Figure 5.8: Chain length distributions for forwarding claims.
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This figure shows the percent of lost replicas and objects when chain lengths are capped 
using aggressive claims forwarding. An object is lost only when all of its replicas are.

Figure 5.9: Reliability of data with capped chain lengths.

forward operations then when utilization is 80%. Forwarding reduces the number of claims 

without changing the sum of all lengths, which leads to longer chains.

5.4.4 Reliability

Chain length is important because it has implications for reliability. The reliability of 

data stored along a chain depends on downstream nodes not failing. Because of this, it 

is important to explore the relationship between storage utilization, chain length, and data 

reliability.

To evaluate reliability in the face of permanent node failure, we constructed a 5000- 

node network using DHT replication. Once constructed, we assumed that nodes perma

nently and simultaneously failed with some probability. This eliminated the failed nodes’ 

objects along with any objects stored on other nodes in exchange. If any lost objects were 

forwarded claims, all upstream data was lost, as described in Section 5.3.

Our first set of experiments isolated the effect of chain length on reliability. To do this, 

we gave nodes unlimited storage capacity and forwarded claims aggressively, up to a limit 

on the number times claims could be forwarded. The results of these experiments are in
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Figure 5.9. It shows both the fraction of lost replicas and the fraction of lost objects; an 

object is lost only when all of its replicas are.

We are interested in the percent of lost replicas beyond those lost in the base case, 

where forwards are capped at one. The number of lost replicas for the base case reflects 

both the objects stored at the failed node and the objects stored in exchange for the claims 

stored at the failed node.

There is a significant drop in reliability between chains of length four and eight. For a 

permanent failure rate of 8 %, when chain lengths are limited to four, only 0.13% of objects 

are lost, whereas when chain lengths are capped at eight, 0.30% of objects are lost. When 

the permanent failure rate is 16%, 1 .1 % of objects are lost when chain lengths are four or 

less, while 3.3% are lost when chain lengths are eight or less. Because forwarding claims 

only when necessary keeps almost all chain lengths below four, it will be reliable even 

with widespread failure.

Our second set of experiments focused on the effect of storage utilization on reliability. 

When storage utilization is low, nodes hold onto all claims they receive, rather than en

danger their data by forwarding them. When storage utilization is high, nodes are forced 

to forward them. To understand this interaction, we examined a range of failure rates 

for storage utilizations of 50% and 80% and forwarded claims both conservatively and 

aggressively. The conservative trials represent expected reliability, while the aggressive 

trials represent worst-case reliability. The results are in Figure 5.10.

These figures show that nodes should always forward claims conservatively. Forward

ing claims aggressively is no more effective at clearing space for replicas at high utiliza

tions, but increases the probability that an object will be lost several-fold. The figures also 

show that excess storage can be adaptively occupied to increase reliability, or cleared to 

create space for more replicas. When utilization is at 50%, forwarding claims conserva

tively and using that excess space to store claims keeps object loss rates low for all failure 

rates. Even when 16% of all nodes permanently fail, only 0.28% of objects are lost. The 

effect of utilization on reliability gives individual users an incentive to dedicate more local 

storage to the system.

It should be noted that our simulations are pessimistic. We have assumed that all
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This figure shows the percent of lost replicas and objects for utilizations of 50% and 80%, 
paired with both aggressive and conservative claims forward schemes.

Figure 5.10: Reliability of data under various storage utilizations.

failures are permanent, because we provide mechanisms for preserving data in the face of 

transient ones. Studies have shown that while transient failures are common, permanent 

ones happen far less frequently [17]. It is unlikely that even 1% of a large population of 

nodes would all permanently fail in such a short period of time that the affected nodes are 

unable to find replacement replica sites.
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CHAPTER 6

CYCLIC EXCHANGE

Storage claims allow nodes to manufacture equal exchange and function as a store 

of value for future transactions. As long as permanent node failure is rare, the transitive 

arrangements created by forwarding storage claims allow trades between arbitrary nodes. 

However, the further downstream a claim is forwarded, the more likely it will be discarded 

and jeopardize the data for which it was exchanged.

This threatens claims’ function as a store of value. A claim’s value is inversely pro

portional to the risk that it will be discarded. It is only valuable to its owner if it can be 

overwritten later. Unfortunately, the risk of a claim not being available for overwriting 

accumulates as it is forwarded. Forwarding causes claims’ value to depreciate. Low con

fidence in claims’ ability to hold their value leads to a network in which nodes will only 

store claims from their preferred replica sites. Nodes will not be willing to circulate claims 

among arbitrary hosts, and only swaps between pairs of mutually interested nodes will be 

possible. This over-constrains storage allocation.

One way to limit the risk of forwarding claims is to guarantee that they will always 

form dependency cycles. Dependency cycles are one fault tolerant and do not jeopardize 

claim value to the degree that dependency chains do. Unfortunately, this is difficult to 

coordinate in a decentralized network of independent nodes. Instead, Pastiche can impose 

a new cyclic constraint on allocation decisions.

Our approach is to build a light-weight, distributed graph among Pastiche nodes based 

on storage demand and swap storage within cycles in the graph. We call this graph the de

mand graph. Edges in the demand graph are directed from a Pastiche node to its preferred

79
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replica sites. In addition to avoiding the disincentive issues of forwarding claims, main

taining and searching the distributed demand graph require a tiny fraction of the bandwidth 

needed to forward claims.

Nodes must execute a distributed cycle search to create replicas. If a node finds a 

cycle, it nominates a cycle coordinator. The coordinator holds a vote among members 

of the cycle to determine the amount of storage to change hands and create dependencies 

between adjacent edges. BEE falls out as a special case of this new approach.

Cyclic allocation consists of two stages—cycle detection and cycle instantiation. To 

detect cycles, nodes send search messages along all incoming and outgoing edges. If a 

cycle exists, then each node in the cycle will receive the search message along at least one 

incoming edge and at least one outgoing edge. Nodes deterministically elect a member of 

the cycles as coordinator. The coordinator must then notify other members of the cycle 

and set the terms of the transaction, including the amount of storage exchanged and the 

dependencies.

A danger of this approach is that nodes will not be able to create replicas if cycles are 

difficult to find. This can happen if cycles do not form in the demand graph. Even when 

cycles do exist, they still must be found. Low node availability and high membership 

chum can impede searches. Nodes can address this problem by computing a risk-analysis 

function. This function helps nodes decide whether they should fall back on BEE or wait 

for a cycle to emerge.

6.1 Searching for Cyclic Demand

There is a large body of work exploring cycle detection in distributed graphs [18, 39, 

64,77, 86,107]. Most of these algorithms are ill-suited to the dearth of global information 

in peer-to-peer networks, though our approach is similar to Chandy and Misra’s [77]. Our 

strategy is to launch two parallel breadth-first searches—one in the same direction as the 

directed edges and one against the directed edges. If both searches reach a node, then it is 

in a cycle with the source.

Our graph consists of Pastiche nodes and edges defined by preferred replica sites. If A  

wants to store its data on B , then there is a directed edge from A  to B , which we denote
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A  => B . To establish the edges of the graph, each node contacts its preferred replica sites 

soon after entering the system. To initiate a search, nodes send search messages along 

all incoming and outgoing edges. Search messages originating from A  are of the form 

{A ,d ir ,t im e ,T T L } ,  where dir € {IN , O U T}. The tim e  field enables repeat searches 

and the T T L  field limits network flooding.

The Misra and Chandy algorithm assumes that the set of all vertices is known at each 

node. Because we cannot make this assumption, we use Bloom filters [14] to remember 

which search messages have been seen with high probability. A Bloom filter is a bit array 

of size j  that summarizes set membership in constant space. Members of the set in question 

are hashed using k different hash functions. The hash results are then used to uniquely set 

bits in the bit array. The bits set by inserting an element into an empty filter are called the 

element’s entries.

To later determine whether an element is in the set, the filter hashes the element and 

examines its entries. Depending on j  and k, if the entries are set, then the element is in the 

set with very high probability. One important feature of Bloom filters is that they produce 

no false negatives. If an element has been added to the filter, any future check of that 

element will be positive. Bloom filters risk generating false positives, but for large enough 

j  and k these should be rare.

Each node maintains two Bloom filters similar to the succeeding and preceding func

tions of Misra and Chandy. One filter is for messages received along incoming edges 

called outsearch and one for messages received along outgoing edges called insearch. 

When a node receives a search message, it first checks to see if the source node has already 

been inserted into the Bloom filter associated with the message direction. If it has, then 

the node has already received the search message and does nothing more. If the node is 

not in the Bloom filter, then the recipient inserts it into the filter and forwards the message 

in the direction of the message field dir.

Next, the recipient checks whether the source node is in the opposite filter. If the source 

nodelD is in the opposite filter, then the recipient has received the search message from 

both directions and it is in a cycle with the source. Figure 6.1 shows an example search. 

When this happens, the recipient sends the source a message containing the edge along
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(a) A begins a search
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IN:{)
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IN:(A)

{A,OUT) {A,IN)

(b) B and C receive and forward a message from A

OUT:{A)
IN:{A)

(c) B and C receive two messages from A 

Figure 6.1: Example Search
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which the search message was received. A response message originating from A is either 

of the form {C, size, A, tim e} when C  =>• A  or {A, size, B, tim e}  when A => B. size  is 

the amount of storage required and tim e  is the value of the last received search message.

Source nodes can determine which cycles they are in from the response messages they 

receive. If node A is in a cycle with nodes B \, B 2, . . .  B n, it sends out search messages 

along all incoming and outgoing edges, and no nodes fail, each Bi will return a response 

message to A.

Say that node A is in a demand cycle with B \ ,B 2, .. ■ ,B n such that A =>■ B \ , Bn => A, 

and Bi => B i+\ for 0 < i <  n. The first round of the search starts when A sends 

search message m o u r = {A ,O U T ,tim e ,T T L }  to B\ and search message m IN = 

{A, IN , tim e, T T L )  to B n. After receiving m o u r> Bi adds A to outseardiB+i. Sim

ilarly, after receiving m IN, B n adds A to insearchBn- In the next round of messages, B x 

forwards m our  to B 2 and Bn forwards ra/w to B n^i who also update their Bloom filters, 

and so on. Assuming no failures, eventually all nodes in the cycle receive both m our  and 

m IN. Thus, each node sends A a response message.

Because Bloom filters sometimes generate false positives, searching nodes may re

ceive spurious response messages. The edges described by these messages may create a 

cycle in the searcher’s internal graph that does not exist in the demand graph. While incon

venient, these inconsistencies will not affect allocation correctness. The searching node 

verifies each edge during the instantiation phase, which we will discuss in more detail in 

Section 6.2.

6.1.1 Search Efficiency and Flooding

Our search requires 0 (e + n )  messages per search, where there are e edges and n  nodes 

in the graph. This is because search messages are only copied along an edge once in each 

direction and because each node sends at most one message back to the source. It uses 

0 ( 1 ) space per node for the Bloom filters.

It is likely that many nodes will search for cycles at once. This could cause 0 (n (e+ n ))  

search messages to flood the network. We can reduce the likelihood of flooding by using 

the T T L  field of the search message. Before a message is forwarded, T T L  is decremented.
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When T T L  reaches zero it no longer needs to be forwarded,

6.1.2 Repeatable Searches

Because of transient failure and membership chum, nodes will likely need to search 

more than once. Unless we are careful, repeat searches may be blocked by regularly 

connected nodes. For example, say that B 's first search reaches A  and B  initiates a second 

search an hour later because it was unable to find a cycle. Unfortunately, when B ’s new 

search message reaches A, A  will check its filter, find B, and not forward the message. The 

Bloom filters remember which messages a node has received, but block multiple searches 

from the same source.

To fix this, we use the tim e  field to maintain logical clocks [6 8 ] between nodes and 

replace our Bloom filters’ bit array with a counter array. Now, whenever a new element 

is added to the Bloom filter, rather than just setting bits in the array, nodes can use the 

search message’s tim e  field to update the filter. This allows nodes to distinguish between 

receiving the same search message twice and a new search by the same node.

Before, when a search message arrived, nodes checked to see if the source had been 

inserted in the Bloom filters. Now, nodes compute the minimum time over each entry of 

the source and compare it to the tim e  field of the search message. If the tim e  field is 

greater than the values from the filter, the node has not seen the search message before. It 

should update its filter and forward the message. Otherwise, the node has already seen the 

search message and doesn’t need to do anything more.

6.2 Instantiating Cycles

If a node finds a cycle, it will receive response messages from other nodes. Using these 

messages, it can build a local, in-memory representation of the demand graph and apply 

a breadth-first search for additional cycles whenever a new edge is added. If this local 

search succeeds, the node must establish a cycle coordinator.

Pastiche nodes elect the cycle member with the lowest numeric id to be coordinator. 

Each node that discovers a cycle forwards the edges and the amount of demand along those 

edges to the coordinator. A node may be the coordinator of multiple cycles at once and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

85

must be careful that each cycle is disjoint.

Instantiating cycles is similar to the two-phase commit protocol [51]. In the first phase, 

the coordinator asks each member of the cycle to vote on its terms. The cycle’s terms 

include the amount of data exchanged and all data dependencies. Currently, the amount 

traded is just the maximum demand among all edges. If a node accepts the terms of 

the cycle, it must temporarily withdraw its edge from the graph. If a node is asked to 

instantiate another cycle later using the same edge, it must must vote against it.

Nodes may vote against a cycle for other reasons. The amount of storage may be more 

than the node is willing to contribute. For example, node A  may be asked to participate 

in a cyclic exchange of 100GB even though it only has 1MB of data. A  may decide that 

100GB of local storage is too much to pay to store 1MB of useful data. Also, a node may 

reject the terms of the cycle because of its length. The smaller a cycle is, the more stable 

it is likely to be. Additionally, messages may be lost or nodes may become disconnected 

during the first phase. If the coordinator does not receive a vote from a node within a 

time-out period, instantiation is aborted.

During the second phase, the coordinator informs each member of the cycle of the 

vote’s outcome. The cycle can only be instantiated by consensus. If any node rejects the 

terms, the coordinator will send all nodes an “abort” message and no data changes hands. 

If a node receives an abort message, it can free its edge and use it to find other cycles. 

Otherwise, the coordinator sends all nodes a “commit” message, who in turn permanently 

withdraw their edges the demand graph. Once instantiation has been committed, data 

maintenance is regulated by BEE.

6.3 Augmenting Cyclic Allocation

In some environments, allocating storage along cycles may not be sufficient. This will 

be true when nodes are frequently disconnected or there are high rates of chum. High 

unavailability makes it difficult to maintain and search the demand graph.

Nodes who are unable to satisfy their storage demand through cycles are faced with a 

choice: they can either wait for a cycle to emerge or they can settle for the storage offered 

to them. For example, say that node A  is having trouble creating replicas at its preferred
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sites. At the same time, node B  has identified A  as one of its preferred sites. A  can either 

wait for a cycle to emerge or it can simply swap storage with a less preferred, but available, 

site like B.

There are risks associated with each choice. The longer A  waits to create its replicas, 

the greater its risk of not recovering from a failure. This risk grows over time. However, 

the risk of waiting is inversely proportional to the number of replicas already in place. If 

A  already has four replicas, adding a fifth has only a small effect on its ability to recover. 

If existing replicas are highly available or trusted because of an out-of-band relationship, 

the risk of waiting is even less.

On the other hand, adding the first or second replica or an available replica to an ex

isting set of unavailable ones can greatly increase a node’s ability to recover. However, 

settling for a less preferred replica site may compromise the independence of a replica set.

Because Pastiche does not support strong identities, an attacker can compromise the 

independence of other users’ replicas. The attacker could create multiple identities and 

request storage under each identity from a recently joined node. To the victim, each request 

would appear to come from a different source. By accepting these requests, the victim 

would unwittingly store all of its replicas on a single host.

Nodes can capture these competing forces with a risk analysis function, R. This func

tion uses a disk’s age, how many replicas it has created, and how available those replicas 

are to compute the probability of not being able to recover from a failure in in the near 

future.

The risk of disk failure is modeled as a Poisson process with mean-time-to-failure 

(MTTF) of 290 days. This MTTF is based on observed machine lifetimes at Microsoft [17], 

We model machine availability by periodically pinging hosts to see if they are alive. Using 

the ratio of successful to total pings, we assign an uptime ratio to each host, 0  <  Ui <  1 , 

for i < U, the total number of replicas. This leads to the following risk function R, where 

t is the time:
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Each node has a risk threshold with which they are comfortable. Whenever R  drops 

below its threshold, a node is willing to settle for whatever storage it can access, even 

though it is otherwise not preferred. Nodes can use R  to monitor their risk and sustain a 

high level of recoverability if cyclic exchange fails them.

6.4 Evaluation

In evaluating cyclic storage allocation, we set out to answer the following questions:

•  How many and what kinds of cycles in the demand can Pastiche nodes expect?

• How does node availability affect searching for cycles?

• Under what conditions is cyclic allocation insufficient?

• How does node chum affect recoverability?

• How much more bandwidth is required to cope with chum?

6.4.1 Characterizing Cycles

There must be cycles in the demand graph for cyclic allocation to be feasible. How 

many cycles emerge from the demand graph is a function of how nodes chose their pre

ferred replica sites. Pastiche nodes prefer that most of their replicas have network prox

imity. These collocated nodes should create short, stable cycles among each another. We 

expect cycles among nodes with no network locality to be longer, if they exist at all.

We simulated several Pastiche networks to characterize cycles among both collocated 

nodes and distant nodes. Each simulated network contained 10,000 nodes. The size of 

the set of collocated nodes is the neighborhood size. We varied the neighborhood size to 

understand the quality of the cycles Pastiche nodes can expect over a range of networks.

Each node in the simulation was assigned a unique identifier and chose ten preferred 

replica sites from the rest of the network. We assume that each node wanted 60% of
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Figure 6.2: Neighborhood Size and Cycle Membership.

its replica to be nearby and 40% to be distant. Nodes selected distant replicas randomly 

from the entire network. They chose their nearby replicas by randomly sampling their 

neighborhood. A node’s neighborhood consisted of the 2k closest nodes in the identifier 

space—thefc immediately greater than its identifier and the k immediately less than its 

identifier. Neighborhoods wrapped around the identifier space. When the neighborhood 

size was equal to the network size, nearby hosts were chosen the same way as distant ones.

To find cycles, we first created a graph based on each node’s preferred replica sites. We 

then iterated through each node, using that node as the root for a breadth-first cycle search. 

As soon as the search found a cycle, we recorded the cycle’s characteristics, removed its 

edges from the graph, and moved on to the next node. If we did not find a cycle, we simply
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moved on to the next node. This process guarantees that each cycle is disjoint and that we 

will find the shortest cycles first. We continued this process until we iterated through each 

node without finding a cycle.

We were interested in answering two questions: how many disjoint cycles can nodes 

expect to be a member of and how long will they be? We looked at networks with neighbor

hood sizes of 10,000, 1,000, 100, and 10. Neighborhood size controls how much locality 

nodes can exploit. In the worst-case the neighborhood size is equal to the network size of

10,000. More likely, nodes will be able to identify a set of collocated hosts, although the 

size of this set will vary. Figure 6.2 shows the results for each network.

Figure 6.2 (a) shows that nodes can expect to be members of between seven and eight 

cycles regardless of the neighborhood size. This result was somewhat surprising. We 

expected cycles to be much more common as neighborhoods size shrank. Instead, they 

cycles were only slightly more common as neighborhood sizes shrank. However, 40% of 

preferred replica sites were chosen independently of the neighborhood size. This greatly 

dampened its overall effect on the number of cycles found.

While neighborhood size did not have much of an effect on the number of cycles, it 

did have an effect on the length of those cycles. Figure 6.2(b) shows that the average cycle 

length decreases by nearly 25% from a neighborhood size of 10,000 to 10. The primary 

reason for this decline is apparent from Figure 6.2(c). Here we see that the number of two 

node cycles grows linearly with falling neighborhood size. This makes sense since double 

coincidences of wants are more likely within smaller networks.

These results are encouraging because they demonstrate that nodes can expect to be 

members of a significant number of cycles for a range of networks. The availability of 

collocated nodes will shorten the length of the cycles nodes find, but it has little effect on 

the number of cycles nodes find.

6.4.2 Node Availability

If nodes are always available, they should find cycles easily. This may not be true under 

more realistic modes of availability. To explore the effect of availability on searching, we 

reran our simulations, but varied each node’s availability. We used a study of machine up-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

9 0

 0.95 ------ 0.85  0.73 0.53 - - - 0.28

a s  0 . 8  g|  0.6 
ra

0.4 

<  0.2

1 50 99
Sorted Node Index

Figure 6.3: Availability Distributions.

times at Microsoft [17] as a starting point. In this study, researchers periodically pinged 

machines at Microsoft over several months to determine if a machine was running or not. 

The study found that half of all machines were up 95% of the time and that up-times 

followed a logarithmic distribution.

Of course, a machine could be running without being available to the Pastiche network, 

but machine uptime is a reasonable approximation to Pastiche availability. The overhead 

of routing search messages and issuing queries is low and nodes have a strong incentive to 

remain available to queries as long as the machine is on.

Nonetheless, to fully understand the effect of availability on searching for cycles, we 

used several availability distributions with different median values. For our experiments, 

the median node availability was .95, .85, .73, .53, or .28. Figure 6.3 shows each of 

these distributions. Before an experiment, we computed a discrete representation of the 

distribution curve with as many points as the network size. We then assigned each node a 

unique point on the curve as its availability.

Simulations were composed of discrete rounds and iterated through every node for 

each every round until the simulation finished. Ten simulated rounds were approximately 

equal to one day of physical time. At the beginning of its turn within a round, each node 

probabilistically went off-line or failed. The probability that a node failed during a round 

was computed using a Poisson process with a MTTF parameter and a node’s disk age as
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input. Nodes started with random disk ages at the start of the simulation so that the failure 

rate was constant. Failures made nodes unavailable for ten rounds, at the conclusion of 

which they reentered with no replicas and a reset disk age. We set the MTTF to 2900 

rounds and ran the simulation until each node failed twice.

On a turn within a round, each node could transmit a new search or response message 

and check its message queues for messages received since its last turn. A search or re

sponse messages sent in one round was not received until the recipient’s turn in the next 

round. If a recipient failed or was unavailable when a message was sent, the messages was 

never received.

If a node found a response message in its message queue, it added the edge to its 

internal graph and looked for a cycle. If it found one, the node tried to instantiate the 

cycle. If any member of the cycle was unavailable or had failed, instantiation was aborted. 

Otherwise, each node created its replica immediately.

When a node failed, it tried to recover using its replicas. If none of its replicas were 

available at the moment it failed, recovery failed. This condition for not recovering was

0.95 0.85 0.73 0.53 0.28

M edian N ode Availability
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overly conservative. A node’s replicas may have been off-line the moment it failed, but 

they might help with recovery if they returned in a later round. However, for the purposes 

of our simulations, we assumed that recovery was only possible during the same round and 

turn as the failure. We were also only interested in failures that occurred in steady-state. 

Thus, our results do not include failures from the first 100 rounds of the simulations, when 

the network was still unsettled.

Figure 6.4(a) shows how availability affected recovery rate in steady state without the 

use of the risk-analysis function R. Nodes only used cyclic allocation and never set

tled for less preferred storage sites. Under the observed median uptime of .95, Pastiche 

demonstrated a perfect recovery rate. The recovery rate remained above 99% for a median 

availability of .85. However, as the median availability decreased so did recovery rate. 

When the half of all machines are available just 28% or less, Pastiche’s recovery rate was 

75%.

We next wanted to see how see how much the risk-analysis function R  could help nodes 

understand when to use whatever storage was available before they failed. Figure 6.4(b) 

shows these results. Using R, Pastiche demonstrated a perfect recovery rate with the 

median availability as low as .73. With median availability .28, Pastiche’s recovery rate 

was 94%. This was much better than the 75% without R.

6.4.3 Node Churn

One of the most difficult aspects of building peer-to-peer services on the Internet is 

membership churn. Chum is the rate at which nodes enter the system for the first time or 

permanently leave. A study of the Ovemet peer-to-peer file sharing system [11] found that 

new members comprised approximately 20% of the system membership. Existing hosts 

permanently exited at the same rate.

To explore the effect of chum on Pastiche we reran our simulations using chum rates of 

.20, .1 and .05 and median availabilities of .28, .73, and 95. For each experiment, the total 

membership size remained constant. However, the chum rate determined what percent of 

the network dropped its data at the beginning of each ten round period. This simulated the 

effect of nodes leaving and being replaced by new nodes.
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One aspect of chum that has not been well studied is which nodes come and go. One 

possibility is that membership chum is uniformly distributed—any node is as likely to 

leave at the end of the day as any other. A more likely scenario is that chum is more 

concentrated in certain parts of the network. In this scenario, give a 20% chum rate, 

80% of nodes maintain their membership over the long-term while the remaining 2 0 % 

of the network turn over on a daily basis. We simulated chum under both uniform and 

concentrated distributions.

If chum is concentrated, Pastiche punishes nodes with only short-term contributions. 

These nodes should have lower recovery rates by design. Thus, we presented the simu

lated recovery rate only for nodes who maintained their membership over the long-term.
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Figure 6.5 shows the results of these simulations.

When chum was concentrated, Pastiche performed nearly as well as with no chum at 

all. For a median availability of .95, Pastiche demonstrated a perfect recovery rate for all 

three chum rates. For a median availability of .73, recovery rate was approximately 99.7% 

for all three chum rates. For a median availability of .28, Pastiche demonstrated a recovery 

rate of 94%.

As expected, recover rates were low when chum was uniformly distributed. In the best 

simulated case, when the chum rate was only .05 and the median availability was .95, only 

87% of nodes were able to recover from failure. When the median availability was .20 

and the median availability was .95, only 63% of nodes recovered. In the worst simulated 

case, when the chum rate was .20 and median availability was .28, Pastiche demonstrated 

a recovery rate of only .44.

These low recovery rates reflect Pastiche’s ability to bind a node’s contribution to its 

level of service. For example, when the chum rate is only .05, nodes expected to turn over 

after only 140 rounds, or approximately two weeks. When the chum rate is .1, nodes only 

expect to last one week and when the chum rate is .2 , replicas only expect to last four 

days. If a node is only willing to maintain storage for others for two weeks, its recovery 

rate should be low.
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CHAPTER 7

RELATED WORK

Pastiche’s goal is to provide convenient, low-cost backup. Pastiche is convenient be

cause it only requires the user to remember a password. As we showed in Section 4.5.2, 

Pastiche is low-cost, because a user with 32GB of unique state will spend only $1.50 per 

month in opportunity costs over two years to create and maintain five replicas. To under

stand why users need Pastiche, we can compare it to existing backup options.

In Section 7.1, we evaluate other backup options using four criteria: cost, convenience, 

local safety, and catastrophic safety. Cost is how many dollars a user spends to backup 

data per month. Convenience measures the effort required to backup data. Local safety 

measures whether or not data can be recovered from a local disk failure and catastrophic 

safety measures whether or not data can be recovered from a local catastrophe.

In addition to addressing the problem of backup, Pastiche provides a platform for deal

ing with self-interested users. Pastiche addresses self-interest through bilateral, equal ex

change, storage claims, and cyclic exchange. We arrived at these techniques after making 

several conservative assumptions, including the absence of a trusted authority and the uni

formity of strategic behavior. Other research projects have made different assumptions 

and in Section 7.2 we examine how they affected various system designs.

7.1 Approaches to Backup

In general, there are three kinds of backup systems: centrally-managed repositories, 

user-managed repositories, and peer-to-peer repositories. Pastiche falls into the last cate

gory while most academic work outside of the peer-to-peer literature has focused on cen-

95
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tralized backup of large installations [75, 90]; Chervenak provides a survey of a number 

of different backup systems [25].

Systems like Veritas’ NetBackup [33] and IBM’s Tivoli [34] are typical of the com

mercial systems available to organizations and users. These systems use a large storage 

infrastructure combining both rotating media such as a RAID for more recent snapshots 

and off-site tape archives of older data. These are large, expensive software and hardware 

packages that require expert administration. They are neither convenient nor low-cost for 

normal PC users. However, they do provide very high quality service. Users of these 

systems are safe from both simple disk failures and correlated, catastrophic failure.

AFS [57], Plan 9 [91], and WAFL [56] expose a snapshot primitive for a variety of 

purposes, including backup. Typically, snapshots are used to stage data to archival media 

other than disk. SnapMirror [8 8 ] leverages WAFL’s snapshot mechanism to provide fine

grained, remote disk mirroring with low overhead.

Other centrally-managed repositories copy data over the Internet and are designed 

specifically for PC users and small organizations. These include services such as @backup [5], 

Live Vault [32], and ibackup [58]. These services are easy to use, do not require any extra 

hardware (although Live Vault offers a local TurboRestore appliance to speed recovery), 

and only require user involvement during setup to choose which file system subtrees to 

backup and how often.

The prices of these services vary widely, depending on the number of snapshots pro

vided. At one end of the spectrum, Live Vault charges nearly $140 per month and provides 

realtime, continuous data backup of 5GB of state. On the other end, for just $10 per 

month, ibackup will store 5GB of data, but no snapshots. For all on-line services, data will 

be safe from local disk failures and larger catastrophic failures. However, these services 

force users to choose between the quality of their service and the price they are willing to 

pay. Pastiche is equally convenient, and provides high-quality service at a cost less than 

the lowest quality alternative.

Of course, users could also maintain their own backup state locally if they are willing 

to manage extra hardware. A simple scheme might use a tool such as the Rsync [108] 

utility to create nightly file system snapshots before copying the snapshots to a second
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hard disk. After some non-trivial initial setup this scheme would protect users’ data from 

local hardware failures. However, if the extra hardware is also stored locally, as is likely, 

users would be vulnerable to catastrophic failures such as a fires or floods.

A similar approach is to use inexpensive network-attached storage (NAS) devices such 

as the Linksys Network Storage Link disk drive [31]. This and other NAS devices attach 

to a PC either via USB or the local Ethernet network and require minimal initial setup. 

This is essentially the Rsync solution with a friendlier user interface. Thus, while they 

may be more convenient than setting up Rsync, they also leave data vulnerable to local 

catastrophes.

The third category of backup solution is a decentralized, peer-to-peer approach, like 

Pastiche. Several projects have suggested the use of peer-to-peer routing and object storage 

systems as a substrate for backup, including Chord [105], Freenet [26], and Pastry [97]. 

File systems built on them, such as PAST [98] and CFS [36], provide protection against 

machine failure. However, they do not protect against human error, nor do they provide 

the ability to retrieve prior versions of files once replaced. OceanStore [95], does provide 

these benefits, but the decision of which versions to retire rests with the utility, not its 

clients. This can lead to slower restores.

The pStore cooperative backup system [7], built on top of Chord, stores individual 

objects on a number nodes, rather than storing the entire set of objects. However, it does 

not exploit inter-host sharing, nor does it address the problem of self-interested hosts. 

Elnikety presents a cooperative backup scheme [45] that requests random blocks from 

partners, but assumes that partners either drop all or none of the archived state.

Pastiche’s use of duplicate data is unique among peer-to-peer systems, although a num

ber of other systems have used this technique in different contexts. The Single Instance 

Store [16] detects and coalesces duplicate files, while Venti [92] divides files into fixed-size 

blocks and hashes those to find duplicate data. Neither of these approaches can take ad

vantage of small edits that move data within a file, as content-based indexing does [74,79]. 

Other sophisticated techniques for detecting such changes exist [2, 108], but must be run 

on pairs of files that are assumed to have overlap.

Broder provides a mathematical foundation for detecting similarity and inclusion based
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on sketches [20], similar to Pastiche’s abstracts. Sketches of a few hundred bytes are able 

to find similarities among single documents on the web [19]. Pastiche extends this result, 

to find similarities between entire disks.

Rather than exploit redundancy, one can instead turn to the use of erasure codes [89] 

to stripe data across several replicas. Such codes allow for low-overhead replication, and 

are tolerant of the failure of one or more replicas; they are employed by Myriad [22], 

OceanStore [95], and Elnikety [45]. Their main shortcoming, compared to our simpler 

scheme, is that they complicate overwriting chunks, since overwriting a single chunk can 

change multiple remote blocks. Furthermore, they require the participation of more than 

one node during restore.

7.2 Strategic Behavior

The application of economic analysis to computer systems is a growing area of re

search. It has been used in a wide range of systems areas, including multicast [46, 85], 

routing [12], sensor networks [73, 83], file sharing [112, 3], cluster computing [61, 48], 

storage [60, 35, 84], and wireless mesh networks [72].

The two primary sources of concern for these systems are how to encourage nodes to 

contribute resources and how to efficiently allocate those resources. Most research has 

focused on the latter, although the former has also received attention.

One way to approach the problem of inefficient allocation of finite resources is to place 

limits on the amount any individual can consume. Several peer-to-peer storage systems 

have considered the problem of enforcing storage quotas in some way, but all assume the 

presence of either a trusted third party or strong identities. Two of the first to address this 

problem were CFS [36] and PAST [98].

In CFS, each storage node limits any individual peer to a fixed fraction of its space. 

These quotas are independent of the peer’s space contribution. CFS uses IP addresses to 

identify peers, and requires peers to respond to a nonce message to confirm a request for 

storage, preventing simple forgery. This does not defend against malicious parties who 

have the authority to assign multiple IP addresses within a block, and may fail in the 

presence of network renumbering [47].
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PAST provides quota enforcement that relies on a smartcard at each peer [98]. The 

smartcard is issued by a trusted third party, and contains a certified copy of the node’s 

public key along with a storage quota. The quota could be determined based on the amount 

of storage the peer contributes, as verified by the certification authority. The smartcard is 

involved in each storage and reclamation event, and tracks the peer’s usage over time.

The grace period attack is also discussed by Lillibridge et al [69] in the context of 

a cooperative backup system. This system provides for challenges between peers, but 

requires symmetric storage relationships, restricting data placement. They propose two 

solutions to the grace period attack. In the first, peers must prove themselves reliable 

by storing random data for some time before benefiting from the system. In the second, 

a centralized third party is used to impose a storage “fine” immediately after a restore 

request.

In addition to these specific storage systems, there have been several efforts to produce 

a general framework that might be applied to peer-to-peer storage. Fileteller [60] pro

poses the use of micropayments to account for storage contributed and consumed. Such 

micropayments can provide the proper incentives for good behavior [50], but must be pro

visioned and cleared by a third party and require secure identities. Cooper [28] proposes 

data trading, the exchange of equal amounts of data, as a way to ensure fairness and dis

courage free-loading. This is similar to Pastiche’s bilateral, equal exchange protocol, but 

suffers from the same problem of over-constrained allocation.

Ngan [84] has proposed a distributed accounting infrastructure. Each peer maintains a 

signed record of every data object it stores, and every object stored on its behalf elsewhere. 

Each node periodically chooses another random node to audit. For each file the node 

claims to hold for some other peer, the auditor retrieves the corresponding peer’s record, 

and compares the two. If the auditor finds a node claiming an object it doesn’t actually 

have, that node can be ejected from the system. This framework differs from Pastiche in 

several ways.

First, it requires certified identities to prevent false accusations and to ensure that 

aliases cannot claim to occupy storage on a node. Second, it tracks only actual usage, 

not capacity; it detects inflated claims of capacity only when the storage system is nearly
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fully utilized. Pastiche detects inflated claims by any individual node as soon as it exceeds 

its contribution. Finally, a random audit may catch a cheater, but it is unlikely that the 

perpetrator claims the auditor itself as a victim. In other words, random audits benefit the 

group as a whole, but cost the auditor directly. Unless users are punished for not auditing 

or benefit directly, it is unclear why a rational node ever would from performing this task. 

In contrast, Pastiche nodes benefit directly from their police-work.

The problem of decentralized resource allocation on shared testbeds is also beginning 

to receive significant attention. SHARP [48] is a framework for the secure, distributed 

allocation and consumption of resources. Like Pastiche, SHARP assumes no globally cer

tified identities. However, the mechanisms in SHARP require principals that exchange 

resource rights to first authenticate one another off-line to establish faith in one another’s 

public keys. Furthermore, resource exchanges in SHARP may be asymmetric, and po

tentially rely on non-local means to detect and punish nodes that advertise and later with

hold services. This is appropriate for platforms like the PlanetLab [8 ] Internet testbed, 

where resources are directly controlled by larger administrative entities like corporations 

and universities. It is not as appropriate for Pastiche, which is designed for independent, 

unaffiliated users.

Several systems, such Cereus [61] and Mirage [83] provide users with monetary bud

gets and allocate resources via auction. Cereus builds on SHARP, but uses auctions and 

self-recharging currency rather than bartering. Mirage applies a similar approach in the 

context of a sensor network testbed. The main difference between the two systems is in 

how their respective currencies are managed. Cereus expires and refreshes user budgets 

after a fixed amount of time. This provides a steady flow of currency over time and pre

vents cycles of inflation and deflation. Mirage, on the other hand, allows users to save and 

accme currency, although savings are taxed to discourage hoarding. Both systems rely on 

a certified fiat currency, which introduces administrative costs eschewed by Pastiche.

In addition to peer-to-peer storage, several systems [12, 85] have looked at eliminating 

free-loading in peer-to-peer routing. Routing is different than storage in that long-term, 

bilateral relationships are rare. This can make Pastiche’s punishment model difficult to 

apply.
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[1 2 ] models the routing problem as a prisoner’s dilemma game in which a trusted, 

global authority punishes free-loaders by assigning them a poor reputation. Users with 

poor reputations are more likely to have their packets dropped. While this approach is 

somewhat limited because it assumes the presence of a trusted authority, node strategies 

converge toward compliance under this assumption.

[85] takes an approach to routing that is similar to Pastiche’s to storage. It attempts 

to create long-term relationships between nodes so that if they observe cheating they can 

retaliate later. Rather than using a global reputation list, users maintain local lists and 

record which paths result in packet loss. It is in nodes’ interest to forward packets because 

forwarding paths are periodically reordered. Reordering the routing paths places nodes 

that may have been cheating behind nodes who have experienced packet loss. This gives 

victims an opportunity to retaliate by dropping packets from nodes they have observed 

misbehaving.

In some environments it may be reasonable to assume that a majority of users are al

truistic, even though we have not in Pastiche. Catch[72] does make this assumption and 

uses it to address free-loaders in wireless mesh networks. Catch is populated by a major

ity of altruistic watchdogs who are willing to do extra police work for the greater good. 

Watchdogs target free-loaders by forwarding them anonymous messages and waiting for 

them to be rebroadcast. Free-loaders are identified based on the relative rebroadcast rate 

of these anonymous packets and actual data packets. If the rebroadcast rate of anonymous 

messages is higher than of data packets, the target is flagged as a free-loader.

Once a watchdog identifies a free-loader, it must inform the nodes around the cheater 

to stop forwarding packets on its behalf. This is tricky when the free-loader lies between 

watchdogs in the network topology. Thus, to notify others the watchdog chooses a random 

token and broadcasts its cryptographic hash. Other watchdogs listen for rebroadcasts of 

the hash followed by a rebroadcast of the token itself. If the watchdog is trying to notify 

others of a free-loader, it will withhold the token. If the other watchdogs do not receive 

the token, they assume the target is a free-loader and cease forwarding its packets.

Finally, our use of cyclic exchange in Pastiche is very similar to work in peer-to-peer 

file sharing [3]. The goal of this system is to align the incentive to contribute content
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with download performance. Nodes looking to download a file can improve their wait 

queue position by finding a cycle of which both they and a file owner are a member. The 

primary difference between this work and Pastiche’s cyclic exchange is the stability of 

the transactions. While Pastiche reroutes data around failed nodes, file sharers can only 

receive data as long as every other member of the cycle does. Once a download finishes or 

is cut short, the entire cycle collapses.
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CHAPTER 8

CONCLUSIONS

This dissertation set out to demonstrate the feasibility of a convenient, low-cost col

laborative backup service using unreliable, untrusted, and self-interested hosts. Pastiche 

provides such a service. Pastiche provides high-quality backup by storing users’ backup 

state in a self-organizing collective of excess disk storage. It can recover from both lo

cal hardware failures such as disk crashes and large-scale correlated failures such as fires, 

floods, and power surges.

Pastiche is convenient because it requires no extra hardware and no administration 

beyond remembering a password. Snapshots and restores are handled by the system au

tomatically and require minimal user interaction. During recovery, users do not need to 

locate any application or operating system files from online sources or CDs. Users only 

need to authenticate themselves to the system to restore their disk.

Pastiche also costs less than conventional alternatives. Users can backup up to 24GB of 

state over two years for under one dollar per month. This is significantly less than the tens 

or even hundreds of dollars per month charged by centralized or online services. Pastiche 

achieves this low-cost by taking advantage of excess PC disk and network capacity to 

render sunk the normal power, cooling, and administrative costs of using a data center.

Pastiche faced three major challenges: providing highly available storage on hosts that 

can come and go without warning, ensuring data privacy and integrity while storing on 

untmsted hosts, and encouraging storage contribution from self-interested users.

Because members of the collective are independent, Pastiche data must be replicated at 

multiple hosts. Unfortunately, replication can strain precious system resources. Pastiche
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eases this strain by identifying common inter-host data. If users only ship the data that 

is unique to them, the collective can accommodate higher replication factors and provide 

greater availability. First, Pastiche looks for local data redundancy by using content-based 

indexing to break files up into content-specific pieces called chunks. These chunks are, 

in turn, named by the cryptographic hash of their content. Hosts can then use the list of 

these chunks to locate disks with similar data. A survey of disks in the EECS department 

at the University of Michigan found that machines with common installations could easily 

identify multiple disks with between 30 and 70 percent of their data data in common.

Data privacy and integrity are easy to provide through encryption. However, Pastiche 

users cannot simply choose their own encryption keys. If this happened, identical chunks 

would be encrypted to different values, which would destroy data sharing. Instead, users 

apply convergent encryption to chunks. Pastiche encrypts chunks using keys derived from 

the contents of the chunk itself. This allows holders of the same block to compute the 

same encryption key and preserves inter-host data sharing.

Encouraging storage contribution in a network of self-interested hosts was the greatest 

challenge of Pastiche. If Pastiche experiences too many free-loaders, the collective may 

collapse from cascading resource withdrawals. To prevent this, Pastiche transformed the 

opportunity costs of sharing from a cost of production into a cost of consumption.

It did this through a barter protocol called bilateral, equal exchange (BEE). Hosts are 

only allowed to store data on those for whom they are storing an equal amount in return. 

Once data has been swapped, hosts query one another to ensure that their’s is intact. If a 

host fails a query, its data is discarded in retaliation. This simple protocol ensures that all 

hosts contribute as much storage as they consume. More important, it provides a strong 

incentive to contribute storage since discarding another host’s data will result in the loss 

of one’s own. Our analysis of a formal model of BEE predicts that under realistic resource 

prices, Pastiche users will contribute storage.

The disadvantage of BEE is that it over-constrains resource allocation. Users are only 

allowed to store data on hosts that want to store data with them. To allow more flexible 

storage allocation, Pastiche augments BEE with uncompressible, junk placeholders called 

storage claims. Storage claims allow hosts to manufacture equal exchange when it does
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not arise naturally. Because claims do not participate in recovery, they can circulate and be 

overwritten. This allows them to act as a store of value for future transactions. Forward

ing claims allows arbitrary hosts to exchange storage, but can create volatile dependency 

chains. Simulations show that dependency chains do not threaten recoverability unless 

there is large-scale simultaneous failure.

Nonetheless, Pastiche can provide more stable, cyclic arrangements through cyclic ex

change. Under cyclic exchange, hosts build a distributed demand graph based on preferred 

replica sites. Users then search the graph for cycles and allocate storage along the edges 

of found cycles, creating dependencies between adjacent edges. Cyclic arrangements are 

more stable than chains and searching the demand graph does not incur the cost of trans

ferring large collections of claims between hosts. Simulations of cyclic exchange show 

that it is robust in the face of low host availability and observed rates of chum. Together, 

BEE, storage claims, and cyclic exchange provide incentives for users to contribute with

out introducing any significant new overhead to the basic Pastiche architecture.
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